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Chapter 13
Analytical Approaches to Agent-Based Models

Raffaello Seri

Abstract The aim of this article is to present an approach to the analysis of simple
systems composed of a large number of units in interaction. Suppose to have a large
number of agents belonging to a finite number of different groups: as the agents
randomly interact with each other, they move from a group to another as a result of
the interaction. The object of interest is the stochastic process describing the number
of agents in each group. As this is generally intractable, it has been proposed in
the literature to approximate it in several ways. We review these approximations
and we illustrate them with reference to a version of the epidemic model. The
tools presented in the paper should be considered as a complement rather than as
a substitute of the classical analysis of ABMs through simulation.

Keywords Individual-based models • Markov processes • Differential equa-
tions • Diffusion approximation • Central limit theorem

13.1 Introduction

The aim of this paper is to provide an introduction to the approximation of a class
of models that may be of some interest in the study of organizations.

The models we consider here describe the evolution over time of a population
composed of similar individuals moving from one to another of d mutually
exclusive categories. Models of this class are sometimes called compartmental
(see, e.g., Matis & Kiffe, 2000) as they represent transitions of individuals between
compartments. From another perspective, the models we consider belong to the class
of individual-based models. Some authors consider individual-based and agent-
based as synonyms (see, e.g., Railsback & Grimm, 2011), while others reserve
the term individual-based for models in which rules of behavior are formulated in
probabilistic terms at the individual level (see, e.g., Black &McKane, 2012, p. 338).
This requires that some simplifying assumptions are needed in order to allow an
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266 R. Seri

affordable analysis: usually each individual can be in only one of a finite number
of states, and members of each state are supposed to be identical in every other
respect.1 These hypotheses are not necessary in agent-based models, in which the
fact that the solution is obtained through simulation allows the researcher to consider
more complex rules of behavior and continuous attributes. The price to pay for this
freedom is that results thus obtained are only numerical. Even if we recognize these
advantages of agent-based models, we claim that the techniques that we are going
to present may still serve several purposes. First, in simplified contexts they could
be seen as direct alternatives to the computer-intensive simulations of agent-based
models. Second, they could be used as a preliminary step in the analysis of agent-
based models, in order to obtain some hints concerning the behavior of the system.
Third, they could serve as auxiliary simulation methods for parts of an agent-based
simulation.

In practice, the models we consider are described by density dependent jump
Markov processes with time homogeneous transition intensities (see, e.g., Kurtz,
1981, Chap. 8 and Ethier & Kurtz, 1986, Chap. 11). As the explicit analysis of these
models may be daunting, we discuss some approximations that have been proposed
in the literature. Their study has been pioneered by Feller (1951) and they have been
developed by Norman (1968, 1972, 1974a, 1974b), Kurtz (1970, 1971, 1976, 1978,
1980, 1981, 1983) and Barbour (1972, 1974). Here we just consider the simplest
situation, without any attempt to cover more advanced topics, such as spatial issues,
age dependence, time inhomogeneity or dependence upon the whole past of the
process. Moreover, we limit ourselves to introduce results already present in the
literature.

We consider a series of models indexed by a number N, that can be the total
population size, the area or the volume occupied by the population or any other
indicator. For N large, the behavior of the model can be approximated by what
happens in the limiting situation in which N is infinity. It turns out that this amounts
to approximate these Markov processes through ordinary and stochastic differential
equations. Clearly, the interest of the approximations is that the limiting behavior
is simpler than what happens for finite N. These approximations have been used
to describe abundances in biological populations (see the reviews in Pollett, 2001;
Black & McKane, 2012), quantities of reactants in chemical reactions (see, e.g.,
Kurtz, 1972) and stochastic process algebra models in computer science (see,
e.g., the introductory treatment in Bortolussi, Hillston, Latella, & Massink, 2013),
among others. It is important to note here that the discrete time case is covered
in Bortolussi et al. (2013, Sect. 2) and Challenger, Fanelli, and McKane (2014),
while an alternative approach based on the so-called master equation can be found
in Goutsias and Jenkinson (2013).

The theoretical results will be illustrated using an example of information spread
in a fixed population. The model is simplistic in several respects. First, the structure
of the model is the simplest possible, with only two compartments and a transition

1In the following models, discrete differences between individuals can be accounted for by
adequately expanding the number of compartments and by varying the transition intensities.
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13 Analytical Approaches to Agent-Based Models 267

between them. This is justified by the fact that the model has only an expository
purpose. However, more reasonable models could be obtained, e.g., supposing that
the population is stratified in several mutually exclusive groups, each one with a
different exposure to the information and a different probability of passing it to
someone else. Second, we suppose very simple interaction mechanisms between
individuals in different states. Indeed, the present form, in which interaction terms
are bilinear in the cardinalities of the two interacting subgroups, has a long history
dating back at least to Lotka and Volterra (note that, while in Lotka, 1925, p.
89 and Volterra, 1962, pp. 119–120, the form of the interaction is justified as
an approximation to the true one, in Volterra, 1931, p. 14 and, especially, in
Volterra, 1962, pp. 9–10, pp. 119–120, a probabilistic interpretation is provided).
However, more complex interactions can be considered, the price to pay being
an increased complexity in the study of the system (by the way, the irrealistic
form of interactions in the Lotka–Volterra model is the rationale that led Gause
and Kolmogorov to introduce their variants of the predator-prey system, see, e.g.,
Sigmund, 2007). Third, the transition intensities between states are supposed to
be time homogeneous, i.e. the rate at which individuals move between states does
not depend explicitly upon time; moreover, the intensities do not depend upon the
past of the process but only upon its present value. We maintain both hypotheses
throughout the whole paper, but we remark that they can be relaxed using the
results in Kurtz (1983). Fourth, the network modeling the agent interactions has
no topological structure (see, e.g., Centola, 2010; Hirshman, Charles, & Carley,
2011; Zhang &Wu, 2012; Wang, Tao, Xie, & Yi, 2013; Plikynas & Masteika, 2014;
however, see the Introduction in Collet, Dai Pra, & Sartori, 2010 for a justification
of mean-field interactions without topological structure in social sciences).

Now we introduce the notation used in the following. The symbols Z, R, and RC
denote respectively the set of integer (positive and negative), real, and nonnegative
real numbers. Vectors are always supposed to be column vectors and indicated with
bold letters. For a vector x, xi denotes its i!th element and jxj is the sum of the
absolute values of the elements of x. The superscript T, as in xT, indicates that the
transpose of x is taken. Capital letters usually indicate random variables. Whenever
needed, we will indicate derivatives of X with respect to time as PX, while we reserve
the prime symbol (X0, X00, X000) for indicating approximations of X. Differentials of
a variable x are indicated as dx and derivatives of a function f with respect to an
argument x are written as @f

@x . The quantities corresponding to finite values of N will
be indexed, whenever possible, by a superscript .N/.

As concerns the structure of the paper, in Sect. 13.2 we introduce the process
specified in terms of transitions between compartments and of density dependent
transition intensities. In Sect. 13.3 we present the first deterministic approximation
through an ordinary differential equation. Section 13.4 contains two different
stochastic results; the first one approximates directly the process with a stochastic
differential equation (see Sect. 13.4.1), the second one shows that the scaled
deviations of the original process from the deterministic process of Sect. 13.3
behaves for large N as a Gaussian process (see Sect. 13.4.2). At last, Appendix
contains a non-technical discussion of the conditions under which the results hold.
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268 R. Seri

13.2 The Original Process

We consider a process
n
OX.N/t

o

t2RC
such that, for any instant of time t " 0, OX.N/t is a

vector of size d with integer coordinates; more formally, we say that OX.N/t takes its
values in Zd. Each coordinate of the vector OX.N/t corresponds univocally to one of
the possible states or compartments of the model, and its value measures the number
of individuals in that state in time t. The process moves in continuous time from a
point of Zd, say k, occupied in t, to another point, say kC `, occupied in tC s, with
s > 0. As already explained in the introduction, the process

n
OX.N/t

o

t2RC
is indexed

by a number N, that can be integer (e.g., the size of the population) or real (e.g., the
area in which the population dwells).

Exercise 1 (News Diffusion Model). The model that we are going to analyze is
(a version of) the simple epidemic model. Consider the spread of a piece of news in a
population ofN individuals. Let OSt and OIt be, respectively, the number of susceptibles
(people that have not yet been reached by the news) and infected (i.e. people that
have been reached by the news) at time t. Clearly, OSt C OIt D N for any t > 0.

Therefore,
h
OSt; OIt

iT
will be equal to k D Œk1; k2!

T with k1Ck2 D N and 0 # k1 # N.

No other values are allowed for
h
OSt; OIt

iT
. On the other hand,

h
OStCs; OItCs

iT
takes the

value kC`. Two facts should be clear. First, the first element of ` should be negative
while the second should be positive, as people can become aware of the news but
cannot do the reverse. Second, all values of ` should be of the form ` D Œ!`;C`!T,
otherwise the elements of kC ` fail to sum to N. ut

We suppose that
n
OX.N/t

o

t2RC
is aMarkov process, i.e. a stochastic process whose

state in t C s depends on the past before t only through the state occupied in t
(see, e.g., Ethier & Kurtz, 1986, Sect. 4.1 or Karlin & Taylor, 1975, Chap. 4, for
definitions). A Markov process can be described by its transition probability, i.e.
the probability that the process

n
OX.N/t

o

t2RC
starting from the value k in t reaches the

value kC ` in tC s:

P
n
OX.N/tCs D kC `

ˇ̌
ˇ OX.N/t D k

o
;

for any t " 0 and s > 0, and where k and ` should in general respect some
constraints. In the following, it will be particularly useful to consider what happens
when s D dt. In this case, we introduce the so-called transition intensities q.N/k;kC`

for k; ` 2 Zd, namely the quantities defined as:

P
n
OX.N/tCdt D kC `

ˇ̌
ˇ OX.N/t D k

o
D q.N/k;kC` $ dtC o .dt/
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13 Analytical Approaches to Agent-Based Models 269

or

lim
dt#0

P
n
OX.N/tCdt D kC `

ˇ̌
ˇ OX.N/t D k

o

dt
D q.N/k;kC`:

Therefore, a transition intensity in t is the limit, as s # 0, of the transition probability
between t and t C s divided by the length of the time period s. It measures the
instantaneous probability that a jump of size ` takes place immediately after t, for a
process starting from k in t. It is often the case that transition intensities are null for
large values of j`j and for some combinations of k and `. As these intensities do not
depend on t, the transition probabilities are called time homogeneous or stationary.

In the following we will further suppose that
n
OX.N/t

o

t2RC
is density dependent

(see Ethier & Kurtz, 1986, Chap. 11 for definition and examples), i.e. that its
transition intensities q.N/k;kC` depend on k only through the ratio k=N. In particular,
this means that the transition intensity between the states k and k C ` takes the
following form:

q.N/k;kC` D N $ ˇ`
!
k
N

"

for a function ˇ` indexed by the jump size `, with k; ` 2 Zd. The requirement
of density dependence implies that the transition intensity increases proportionally
to the index N and depends on the state of the process k only through its density
k=N. Because of density dependence, we are led to consider

n
X.N/t

o

t2RC
, defined by

X.N/t D OX.N/t =N. In this case, we have:

lim
dt#0

P
#
X.N/tCdt D

k
N

C `

N

ˇ̌
ˇ̌X.N/t D k

N

$

dt
D N $ ˇ`

!
k
N

"
: (13.1)

Exercise 2 (News Diffusion Model—Continued). In each infinitesimal interval
dt, the number of contacts between susceptibles and infected can be assumed to be
proportional to OSt $ OIt. The probability that two or more contacts take place in dt is
o .dt/. When such a contact takes place, we suppose that the probability that the
news is transmitted from the infected to the susceptible is fixed and independent of

everything else. Let OX.N/t D
h
OSt; OIt

iT
. Therefore:

P
#% OStCdt

OItCdt

&
D
%
Ost ! 1
Oit C 1

& ˇ̌
ˇ̌
% OSt
OIt

&
D
%
Ost
Oit

&$
D p $ Ost $ Oit

N
$ dtC o .dt/ :
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270 R. Seri

In dt values of ` different from ` D Œ!1;C1!T yield transitions of such a low
probability to be o .dt/. This means that:

ˇŒ!1;C1!T
'
Œx1; x2!

T
(
D p $ x1x2:

This simple example lends itself to a further remark. As OSt C OIt D N and N is fixed,
OSt is known when OIt is and we can also identify OX.N/t D OIt. In this case k D k with
0 # k # N and ` D 1:

P
n
OItCdt D Oit C 1

ˇ̌
ˇOIt D Oit

o
D p $

'
N ! Oit

(
Oit

N
$ dtC o .dt/ ; (13.2)

while other values of ` yield 0 (or o .dt/) transition intensities. In the following we
will use the definitions St D OSt=N and It D OIt=N. Equation (13.2) becomes:

P
#
ItCdt D it C

1

N
jIt D it

$
D N $ p $ .1 ! it/ it $ dtC o .dt/ ;

where ˇ1 .x/ D p $ x .1 ! x/. In Fig. 13.1, a trajectory of
n
OIt
o

t2RC
and fItgt2RC with

p D 0:01, N D 20 and OI0 D 2, is reproduced as a step function. ut

Fig. 13.1 Graph of a

trajectory of
n
OIt
o

t2RC
and

fItgt2RC with p D 0:01,

N D 20 and OI0 D 2
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13 Analytical Approaches to Agent-Based Models 271

Now we try to understand heuristically what happens to X.N/tCdt ! X.N/t when N
diverges. Equation (13.1) leads to:

P
#
X.N/tCdt D

k
N

C `

N

ˇ̌
ˇ̌X.N/t D k

N

$
D P

#
X.N/tCdt ! X.N/t D `

N

ˇ̌
ˇ̌X.N/t D k

N

$

' N $ ˇ`
!
k
N

"
$ dt:

This means that, for any ` 2 Zd, the random variable X.N/tCdt ! X.N/t will take the
value `

N with probability approximately equal to N $ ˇ`
) k
N

*
$ dt. Therefore its mean

and variance are approximately:

E
%
X.N/tCdt ! X.N/t

ˇ̌
ˇ̌X.N/t D k

N

&
'
X

`

`

N
$ N $ ˇ`

!
k
N

"
$ dt D

X

`

` $ ˇ`
!
k
N

"
$ dt

and:

V
%
X.N/tCdt ! X.N/t

ˇ̌
ˇ̌X.N/t D k

N

&
'
X

`

``T

N2
$N$ˇ`

!
k
N

"
$dt D 1

N
$
X

`

``T$ˇ`
!
k
N

"
$dt:

This shows that, when X.N/t D x, X.N/tCdt ! X.N/t approximately behaves, on average,
as
P

` ` $ˇ` .x/ $ dt, and that the variance of X.N/tCdt !X.N/t around its mean decreases
as N!1. This means that, when N is very large, X.N/tCdt ! X.N/t is well approximated
by
P

` ` $ ˇ` .x/ $ dt, a fact that is the object of Sect. 13.3. Moreover, in Sect. 13.4,
we will show that also the deviation between X.N/tCdt !X.N/t and

P
` ` $ˇ` .x/ $ dt can

be studied and used to improve the previous approximation.

13.3 The Deterministic Limit

In this section we show that, when N is large enough,
n
X.N/t

o

t2RC
can be approxi-

mated by a deterministic process
˚
X0

t

+
t2RC

(see Appendix for conditions).
Define the function:

f .x/ WD
X

`

` $ ˇ` .x/

where the sum is extended over all possible values of `. As N ! 1, under some
additional conditions that will be detailed in Appendix,

n
X.N/t

o

t2RC
converges to the

deterministic process
˚
X0

t

+
t2RC

defined by:
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272 R. Seri

X0
t D X0

0 C
Z t

0

f
)
X0

s

*
ds; t " 0:

Now, using this formula for X0
tCdt and X0

t, this process can be written as:

X0
tCdt ! X0

t D
Z tCdt

0

f
)
X0

s

*
ds !

Z t

0

f
)
X0

s

*
ds

D
Z tCdt

t
f
)
X0

s

*
ds D f

)
X0

t

*
dt; t " 0;

or, using the equality
X0
tCdt!X0

t

dt D PX0
t, equivalently as:

PX0
t D f

)
X0

t

*
; t " 0

or:

dX0
t D f

)
X0

t

*
$ dt; t " 0: (13.3)

Exercise 3 (News Diffusion Model—Continued). In the first version of the news
diffusion model (see Exercise 2):

f .x/ D
X

`

` $ ˇ` .x/ D
%

!1
C1

&
$ p $ x1x2

and:
% PS0t
PI0t

&
D
%

!p $ S0tI0t
Cp $ S0tI0t

&
; t " 0:

In the second rewriting of the model (see Exercise 2), we get:

f .x/ D
X

`

` $ ˇ` .x/ D p $ x .1 ! x/ :

Therefore, the corresponding differential equation is:

PI0t D p $ I0t
)
1 ! I0t

*
; t " 0

or

dI0t D p $ I0t
)
1 ! I0t

*
dt; t " 0: (13.4)
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Fig. 13.2 Graph of
˚
I0t
+
t2RC

(in black) over a trajectory of
fItgt2RC (in grey)

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I t'

t

It is possible to see that the two models are indeed the same. By the way, this model
has a closed form solution. Supposing that I00 D i0, the solution is:

I0t D
exp .p $ t/

1!i0
i0

C exp .p $ t/
:

When t D 0, we have I00 D i0 while, when t ! 1, limt!1 I0t D 1. Moreover, the
curve t 7! I0t is increasing. In Fig. 13.2, the deterministic approximation

˚
I0t
+
t2RC

,
corresponding to p D 0:01 and i0 D 0:1, is reproduced in black over the previous
trajectory of fItgt2RC , in grey. In Fig. 13.3, the difference between the trajectory of
the original process and its deterministic approximation,

˚
It ! I0t

+
t2RC

, is displayed.
ut

As shown in the figures, the process
n
X.N/t

o

t2RC
deviates from its deterministic

approximation
˚
X0

t

+
t2RC

. The new stochastic process
n
X.N/t ! X0

t

o

t2RC
is character-

ized by fluctuations that decrease when N increases. In particular, it can be shown
that:2

X.N/t D X0
t C OP

!
1p
N

"
: (13.5)

2We write that Xn D OP .an/ where n is an index diverging to infinity if, for any " > 0, there exists
a finite M > 0 such that P .jXn=anj > M/ < " for any n large enough.
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Fig. 13.3 Graph of a
trajectory of

˚
It ! I0t

+
t2RC
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In terms of the original process, we have:

OX.N/t D N $ X0
t C OP

'p
N
(
:

In the next section we will see that theOP
'

1p
N

(
term in (13.5) provides a refinement

to this approximation.

13.4 The Stochastic Limit

The previous result states that, when N is large enough, the process
n
X.N/t

o

t2RC
converges to a deterministic process

˚
X0

t

+
t2RC

expressed as a differential equation.
The results that we are going to present in this section describe the fluctuations of
the process

n
X.N/t ! X0

t

o

t2RC
for large values of N.

In the literature on approximations for density dependent Markov processes, two
different kinds of stochastic results are considered. In the first one, often called
diffusion approximation,

n
X.N/t

o

t2RC
is directly approximated through a diffusion.

In the second one, one approximates the process
n
V.N/t

o

t2RC
, where:

V.N/t WD
p
N
'
X.N/t ! X0

t

(
;
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13 Analytical Approaches to Agent-Based Models 275

given by the scaled fluctuations of the stochastic process
n
X.N/t

o

t2RC
around the

deterministic evolution
˚
X0

t

+
t2RC

, through a Gaussian process fVtgt2RC . This goes
under the name of Central Limit Theorem approximation.

13.4.1 The Diffusion Approximation

Let us start from the diffusion approximation. In this case,
n
X.N/t

o

t2RC
is approxi-

mated by the Gaussian process
˚
X00

t

+
t2RC

(see Appendix for conditions) described

by the following stochastic differential equation (SDE) or Itô diffusion:3

dX00
t D f

)
X00

t

*
dtC 1p

N

X

`

` $
q
ˇ`
)
X00

t

*
$ dW`;t; t " 0;

where the processes fW`;tgt2RC are independent Brownian motions, each one

associated with a value of `. Remark that
P

` ` $
p
ˇ` .x/ $ dW`;t is a Gaussian

random vector with 0 mean and variance:

V
 
X

`

` $
p
ˇ` .x/ $ dW`;t jx

!
D dt $

X

`

``T $ ˇ` .x/ : (13.6)

The limit of the process
˚
X00

t

+
t2RC

for large N is exactly
˚
X0

t

+
t2RC

.
In integral terms, the process can be written as:

X00
t D X00

0 C
Z t

0

f
)
X00

s

*
dsC 1p

N

X

`

` $
Z t

0

q
ˇ`
)
X00

s

*
$ dW`;s; t " 0:

Exercise 4 (News Diffusion Model—Continued). The diffusion equation is:

dI00t D p $ I00t
)
1 ! I00t

*
dtC 1p

N
$
q
p $ I00t

)
1 ! I00t

*
$ dWt; t " 0:

The stochastic part of the equation has variance:

V
!
1p
N

$
p
p $ it .1 ! it/ $ dWt jit

"
D 1

N
$ p $ it .1 ! it/ $ dt:

3We follow here the Kunrei-shiki romanization convention, instead of the more common Hepburn
romanization Itō, because Itô himself used the first one in several publications.
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Fig. 13.4 Graph of a
trajectory of

˚
I00t
+
t2RC (in

black), over
˚
I0t
+
t2RC and a

trajectory of fItgt2RC (both in
grey)

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I t''

t

This implies that the process is heteroskedastic, i.e. its variance depends on t. In
Fig. 13.4, we reproduce a trajectory of

˚
I00t
+
t2RC

, in black, over the deterministic

approximation
˚
I0t
+
t2RC

and the previous trajectory of fItgt2RC , both in grey. From

the graph there seems to be no particular similarity between
˚
I00t
+
t2RC

and fItgt2RC :
we will pursue this point at the end of Sect. 13.4.2, showing that, for large enough
N, the paths

˚
I00t
+
t2RC

and fItgt2RC look similar in distribution. ut

As concerns the precision of the approximation, for any process fXtgt2RC it is
possible to find a process

˚
X00

t

+
t2RC

such that (see Appendix for references):

X.N/t D X00
t C O

!
lnN
N

"
:

13.4.2 The Central Limit Theorem Approximation

As briefly explained above, this result considers the process
n
V.N/t

o

t2RC
, where:

V.N/t WD
p
N
'
X.N/t ! X0

t

(
:

By (13.5), we expect V.N/t to be OP .1/.
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Consider @f, the matrix of partial derivatives of f, defined as:

Œ@f .x/!i;j D
@fi .x/
@xj

where fi is the i!th element of the vector of functions f and xj is the j!th element of
x. We define a Gaussian process fVtgt2RC through the SDE:

dVt D @f
)
X0

t

*
$ VtdtC

X

`

` $
q
ˇ`
)
X0

t

*
$ dW`;t; t " 0; (13.7)

where the processes fW`;tgt2RC are independent Brownian motions, each one
associated with a value of `. Remark that

˚
X0

t

+
t2RC

is deterministic and therefore,
in this SDE, both the drift and the diffusion coefficients are known in advance.

Under certain regularity conditions (see Appendix), we have:

V.N/t !D Vt; t " 0; (13.8)

where the subscript on the arrow denotes convergence in distribution. This means
that the fluctuations of

n
X.N/t

o

t2RC
around

˚
X0

t

+
t2RC

, opportunely scaled, behave as

the Gaussian process fVtgt2RC .

Exercise 5 (News Diffusion Model—Continued). We get:

@f .x/ D p .1 ! 2x/ :

Therefore, the corresponding diffusion equation is:

dVt D @f
)
I0t
*

$ VtdtC
q
ˇ1
)
I0t
*

$ dWt

D p
)
1 ! 2I0t

*
$ VtdtC

q
p $ I0t

)
1 ! I0t

*
$ dWt: (13.9)

In Fig. 13.5, a trajectory fVtgt2RC , in black, is plotted against the trajectory ofn
V.N/t

o

t2RC
D
np

N $
)
It ! I0t

*o

t2RC
, in grey, already displayed in Fig. 13.3 with

a different scaling. ut

Now, from the definition V.N/t WD
p
N
'
X.N/t ! X0

t

(
and the approximate result

V.N/t ' Vt, valid in distribution for large N, we get:

p
N
'
X.N/t ! X0

t

(
' Vt;
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Fig. 13.5 Graph of a
trajectory of fVtgt2RC
(in black) and of one ofnp

N " )It ! I0t
*o

t2RC
(in grey)
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X.N/t ' X0
t C

1p
N

$ Vt: (13.10)

The right-hand side of the last line leads us to consider the process
˚
X000

t

+
t2RC

,

defined through the equality X000
t WD X0

t C 1p
N

$Vt. This process is an approximation

to
n
X.N/t

o

t2RC
. In differential terms,

˚
X000

t

+
t2RC

is defined by:

dX000
t D dX0

t C
1p
N

$ dVt

D f
)
X0

t

*
$ dtC 1p

N
$ @f

)
X0

t

*
$ Vt $ dtC 1p

N
$
X

`

` $
q
ˇ`
)
X0

t

*
$ dW`;t; t " 0

where we have used (13.3) and (13.7). The replacement Vt D
p
N $
)
X000

t ! X0
t

*
leads

us to:

dX000
t D

#
f
)
X0

t

*
C 1p

N
$ @f

)
X0

t

*
$ Vt

$
$ dtC 1p

N
$
X

`

` $
q
ˇ`
)
X0

t

*
$ dW`;t

D
˚
f
)
X0

t

*
C @f

)
X0

t

*
$
,
X000

t ! X0
t

-+
$ dtC 1p

N
$
X

`

` $
q
ˇ`
)
X0

t

*
$ dW`;t; t " 0:

The differences with respect to
˚
X00

t

+
t2RC

are the more complex form of the
drift coefficient and the fact that the diffusion coefficient depends on the process
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Fig. 13.6 Graph of a
trajectory of

˚
I000t

+
t2RC (in

black), over trajectories of˚
I00t
+
t2RC , fItgt2RC and over

˚
I0t
+
t2RC (all in grey)
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˚
X0

t

+
t2RC

. As this process is a deterministic function of t, the diffusion coefficient
behaves as if a forcing is applied.

Exercise 6 (News Diffusion Model—Continued). Starting from (13.10) and
replacing in it the formulas (13.4) and (13.9) for dI0t and dVt, we get:

dI000t D dI0t C
1p
N

$ dVt

D p $ I0t
)
1 ! I0t

*
dtC 1p

N
$
#
p
)
1 ! 2I0t

*
$ VtdtC

q
p $ I0t

)
1 ! I0t

*
$ dWt

$

D p $
n)
1 ! 2I0t

*
$ I000t C

)
I0t
*2o $ dtC 1p

N
$
q
p $ I0t

)
1 ! I0t

*
$ dWt; t " 0:

In Fig. 13.6, we plot a trajectory of
˚
I000t
+
t2RC

, in black, over the previous trajectories

of
˚
I00t
+
t2RC

, fItgt2RC and over
˚
I0t
+
t2RC

, all in grey. In order to ensure comparability,

both
˚
I000t
+
t2RC

and
˚
I00t
+
t2RC

have been based on the same Brownian motion path
fWtgt2RC . ut

There is little to choose between
˚
X00

t

+
t2RC

and
˚
X000

t

+
t2RC

as concerns the

precision of the approximation. Indeed, for any process
n
V.N/t

o

t2RC
it is possible

to find a process fVtgt2RC such that (see Appendix for references):

p
N $

'
X.N/t ! X0

t

(
D Vt C O

!
lnNp
N

"
:
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Fig. 13.7 Plot of 10 paths of fItgt2RC ,
˚
It ! I0t

+
t2RC ,

˚
I000t

+
t2RC and

˚
I000t ! I0t

+
t2RC (in columns,

from left to right) for N D 100; 1;000; 10;000 (in rows, from top to bottom)

This implies that, for any process fXtgt2RC it is possible to find a process
˚
X000

t

+
t2RC

such that:

X.N/t D X000
t C O

!
lnN
N

"
:

Exercise 7 (News Diffusion Model—Continued). In Fig. 13.7, we, respectively,
represent some paths of fItgt2RC ,

˚
It ! I0t

+
t2RC

,
˚
I000t
+
t2RC

and
˚
I000t ! I0t

+
t2RC

, for
three values of N. The parameters are p D 0:01 and i0 D 0:01 for all the graphs.
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Each row corresponds to a different value of N, namely, from top to bottom,
100, 1,000, and 10,000. The first column contains the graphs of 10 realizations
of fItgt2RC , in black, as well as the curve

˚
I0t
+
t2RC

, in grey. The second column

illustrates the behavior of
˚
It ! I0t

+
t2RC

, displaying the deviations between each
one of the 10 paths of the previous column and the deterministic approximation˚
I0t
+
t2RC

. The third column contains 10 realizations of the central limit theorem

approximation
˚
I000t
+
t2RC

, in black, and the curve
˚
I0t
+
t2RC

, in grey. The fourth

column contains the differences
˚
I000t ! I0t

+
t2RC

. We do not plot
˚
I00t
+
t2RC

because the

graphs in which this process replaces
˚
I000t
+
t2RC

are undistinguishable with respect
to these ones. The rationale of the graph is that the processes in the third (fourth)
column should be approximations of the ones in the first (second) column. We have
depicted several realizations in each subplot, because the approximation holds only
in distribution and, as such, one realization would be insufficient to illustrate how its
quality increases when passing from small N (i.e., the first row) to large N (i.e., the
third row). Indeed, it is apparent from the graph that, for N D 100, the agreement
between the distribution of the centered point process

˚
It ! I0t

+
t2RC

and that of the

Gaussian process
˚
I000t ! I0t

+
t2RC

is not particularly good; this fact is witnessed by

the different appearance of the curves fItgt2RC and
˚
I000t
+
t2RC

. For N D 1;000, the
agreement is clearly much better, while for N D 10;000 the two sets of curves are
indistinguishable. ut

13.5 Conclusions

In this paper, we have presented some probabilistic results that can be useful to
approximate analytically a class of intrinsically stochastic individual- or agent-
based models. With respect to classical agent-based models whose behavior is
studied through simulation, the present approach is not able to deal with arbitrarily
complex rules of behavior and often requires simplified assumptions. However, we
believe that the methods presented here can still be helpful in the analysis of models
customarily approached through simulation. Up to our knowledge, the most lucid
example of this interaction is the analysis, performed in Galán and Izquierdo (2005),
of the Norms and Metanorms models introduced in Axelrod (1986). This example
shows how much insight can be gained when the mathematical approach is used as
a supplement of simulations.

Appendix: Technical Conditions

In this appendix, we discuss the technical conditions under which the results stated
above hold true.
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As concerns the deterministic approximation of Sect. 13.3, we follow
Theorem 8.1 in Kurtz (1981) (similar results are Theorem 3.1 in Norman, 1968;
Theorem (3.1) in Kurtz, 1970; Theorem 8.1.1 in Norman, 1972; Theorem (2.1)
in Kurtz, 1976; Theorem 2.2 in Kurtz, 1978; Theorem (2.16) in Kurtz, 1980;
Theorem 2.1 in Chap. 11 in Ethier & Kurtz, 1986).

Let K % E be a bounded and closed (i.e., compact) set. The first condition
requires that, for each K:

X

`

j`j $ sup
x2K

ˇ` .x/ <1:

The second condition requires that, for any K, there exists MK such that:

jf .x/ ! f .y/j # MK $ jx ! yj ; x; y 2 K:

At last, we require that the initial condition of the original process converges to
the one of the deterministic one, i.e. limN!1 X.N/0 D x0. By the way, under these

conditions, the convergence of
n
X.N/t

o

t2RC
to
˚
X0

t

+
t2RC

is uniform for t belonging

to bounded subsets of RC.

Exercise 8 (News Diffusion Model—Continued). Consider the epidemic model
seen in Exercise 1 in the second rewriting. Using the fact that x 2 Œ0; 1!, it is possible
to see that x .1 ! x/ # 1

4
. Therefore, we have:

X

`

j`j $ sup
x2K

ˇ` .x/ D p $ sup
x2K

x .1 ! x/ # p
4
<1:

As concerns the second hypothesis, we have:

jf .x/ ! f .y/j D p $ jx .1 ! x/ ! y .1 ! y/j

# p $ sup
z2Œx;y!

ˇ̌
ˇ̌@ Œz .1 ! z/!

@z

ˇ̌
ˇ̌ $ jx ! yj

D p $ sup
z2Œx;y!

j1 ! 2zj $ jx ! yj # p $ jx ! yj

where the second step derives from the mean value theorem. At last, we have
supposed that I0 D i0 so that the initial condition is trivially verified. ut

The diffusion approximation of Sect. 13.4.1 holds under the following conditions
(this is Theorem 8.4 in Kurtz, 1981; see Theorem (3.13) in Kurtz, 1976; Theorem 3.3
in Kurtz, 1978; Theorem 2.1 in Kurtz, 1983; Theorem 3.1 in Chap. 11 in Ethier &
Kurtz, 1986 for alternative or more general conditions):

• for any index ` but a finite number, ˇ` .x/ & 0;
• for any index `, ˇ` D supx ˇ` .x/ < C1;
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• there exists M > 0 such that:

jˇ` .x/ ! ˇ` .y/j # M $ ˇ` $ jx ! yj I

• there exists M > 0 such that:

jf .x/ ! f .y/j # M $ jx ! yj :

The rate on the approximation of fXtgt2RC through
˚
X00

t

+
t2RC

at the end of
Sect. 13.4.1 can be found in Theorem (3.13) in Kurtz (1976), Theorem 3.3 in Kurtz
(1978), Theorem 8.4 in Kurtz (1981) and Theorem 3.1 in Chap. 11 in Ethier and
Kurtz (1986). By the way, the coupling is uniform over bounded intervals of the real
line.

Exercise 9 (News Diffusion Model—Continued). There exists only one index `,
i.e. ` D 1, for which ˇ` 6& 0. For this index, ˇ1 D p $ supx2Œ0;1! x .1 ! x/ D p=4 <
C1. Now, from Exercise 8:

jˇ1 .x/ ! ˇ1 .y/j # p $ jx ! yj ;

i.e. one can takeM D 4. On the other hand, always from Exercise 8:

jf .x/ ! f .y/j D jˇ1 .x/ ! ˇ1 .y/j # p $ jx ! yj ;

i.e. one can take M D p. Therefore, any M " max f4; pg respects the conditions.
ut

The convergence in Sect. 13.4.2 holds under the following conditions (these are
the ones stated in Theorem 8.2 in Kurtz, 1981; for related results, see Theorem 1.1
in Norman, 1968; Theorem (3.5) in Kurtz, 1971; Theorem 8.1.1 in Norman, 1972;
Theorem 1 in Barbour, 1974; Theorem (2.3) in Kurtz, 1976; Theorem 2 in Allain,
1976a; Theorem 4.4 in Kurtz, 1978; Theorem 2.2 in Kurtz, 1983; Theorem 2.3 in
Chap. 11 in Ethier & Kurtz, 1986):

• for each bounded closed set K, we have:
X

`

j`j2 sup
x2K

ˇ` .x/ <1I

• the functions @f and ˇ` , for each `, are continuous;
• the initial conditions converge in such a way that limN!1

p
N
ˇ̌
ˇX.N/0 ! x0

ˇ̌
ˇ D 0.

Versions of this result holding uniformly for t > 0 have been stated in Theorem 3.2
(ii) in Norman (1974b), Theorem 1 in Norman (1974a), Theorem (2.7) in Kurtz
(1976) and Theorem 8.5 in Kurtz (1981). Berry–Esséen-type theorems can be found
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in Theorem 1 in Barbour (1974), Theorem (2.5) in Kurtz (1976), Allain (1976b),
Corollary 4.5 in Kurtz (1978) and Chapters 5 and 6 in Alm (1978).

The rate on the approximation of fXtgt2RC through
˚
X000

t

+
t2RC

at the end of
Sect. 13.4.2 is uniform over bounded subsets of the real line and can be found in
Theorem 4.4 in Kurtz (1978) and in Theorem 3.2 and following remarks in Chap. 11
in Ethier and Kurtz (1986).

Exercise 10 (News Diffusion Model—Continued). Reasoning as in Exercise 8,
we have:

X

`

j`j2 $ sup
x2K

ˇ` .x/ # p
4
<1:

As concerns @f .x/ D p $ .1 ! 2x/ and ˇ1 .x/ D p $ x .1 ! x/, they are clearly
continuous. ut
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