
ARTICLE IN PRESS
Journal of Econometrics 132 (2006) 379–407
0304-4076/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jeconom
Non-causality in bivariate binary time series

Rocco Mosconia,�, Raffaello Serib

aDipartimento di Ingegneria Gestionale, Politecnico di Milano, P.za Leonardo da Vinci 32,

20133 Milano, Italy
bDipartimento di Economia, Università degli Studi dell’Insubria, via Ravasi 2, 21100 Varese, Italy

Available online 15 April 2005
Abstract

In this paper we develop a dynamic discrete-time bivariate probit model, in which the

conditions for Granger non-causality can be represented and tested. The conditions for

simultaneous independence are also worked out. The model is extended in order to allow for

covariates, representing individual as well as time heterogeneity. The proposed model can be

estimated by Maximum Likelihood. Granger non-causality and simultaneous independence

can be tested by Likelihood Ratio or Wald tests. A specialized version of the model, aimed at

testing Granger non-causality with bivariate discrete-time survival data is also discussed. The

proposed tests are illustrated in two empirical applications.
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1. Introduction

The epistemological status of the statistical-probabilistic notion of causality based
on predictability is still a matter of profound controversy among philosophers and
methodologists (see Basmann, 1988, pp. 96–98; Geweke, 1984; Swamy and von zur
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Muehlen, 1988). This notion fits, in a probabilistic sense, the two key aspects of the
Hume theory of causation: the systematic conjunction of cause and effect, and the
time precedence of the cause with respect to the effect. Nonetheless, it fails
to account for what probably is the deepest, though empirically less helpful, aspect,
i.e., the idea that the cause ‘‘forces’’ or ‘‘produces’’ the effect. Despite these
limitations, the notion of causality based on predictability proved to be a valuable
tool for applied research thanks to its operational usefulness in the construction,
estimation, interpretation and application of econometric models.

In Economics, the notion of non-causality has mainly been used to model
macroeconomic variables, and hence one single realization of the processes involved
in the analysis is usually assumed, such processes are assumed to be continuous and
exogenous processes are seldom included in the information set. In this framework,
non-causality is usually tested assuming that the process of interest belongs to the
class of Vector ARIMA processes. On the other hand, in microeconometric
applications, where the variables are often qualitative and where longitudinal data
are usually available, the VARIMA framework is not appropriate, and including
covariates to account for individual heterogeneity becomes an essential aspect of
modelling. Therefore, a set of ad hoc tools has to be developed in order to make the
usual definitions of non-causality operational.

In this paper, we discuss non-causality analysis in a bivariate discrete-time binary
process,1 in a panel data setting, possibly allowing for covariates. This case has
received a certain attention, but no general technique has been proposed in order to
deal with it. In the econometric literature, the case of Markov chains without
covariates is discussed in Chamberlain (1982), Bouissou et al. (1986) and in
Gouriéroux et al. (1987). Furthermore, in the sociometric literature, models for
studying interdependencies and causality relations between transitions are so
relevant that Stolnitz (1983) advocated their construction and use as one of the
five great challenges of demographic research. In particular, the special case of two-
wave bivariate binary models is often called the ‘‘sixteen-fold table problem’’ and has
received attention since Lazarsfeld (1948, see also McCullough, 1978). Specific
models for the study of the interaction between two binary choice process have been
proposed by Yamaguchi (1990); Lillard (1993) and Petersen (1995). In particular,
Yamaguchi (1990) is the only one dealing explicitly with causality testing, but he
adopts a definition different from Granger non-causality and hardly acceptable. As a
general remark, it seems that one of the critical points in these papers is the
modelling of simultaneity between transitions, since these models are often based on
a non-stated assumption of strong simultaneous independence.

The paper is organized as follows. Section 2 illustrates in a very general setting the
probability aspects of the definitions of non-causality based on predictability. Next,
under the maintained assumption that the process of interest is a Markov chain with
stationary transition probabilities, and that the information set is restricted to the
1The case of continuous-time counting processes, fully observed or subject to grouping and censoring, is

addressed in the literature (Schweder, 1970; Aalen et al., 1980; Tuma, 1980; Winship, 1986; Aalen, 1987;

Florens and Fougère, 1996).
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history of the process. Section 3 shows how non-causality analysis may be performed
in a dynamic bivariate probit model. Section 4 extends the simple dynamic probit
model illustrated in Section 3 in two directions. First, the assumption of stationary
transition probabilities is dropped, allowing the transition probabilities to depend on
covariates. Then, the first-order Markov assumption is also relaxed, allowing for
more complex dynamic structures. Section 5 shows under which conditions the
Maximum Likelihood estimates of the parameters of the proposed models, as well as
the Likelihood Ratio tests for hypotheses on such parameters, display the usual
asymptotic properties. Possible problems in finite samples are also illustrated.
Section 6 shows how the proposed analysis does specialize when one is interested in a
specific four states Markov chain, corresponding to discrete-time bivariate survival
data. Sections 7 and 8 illustrate the proposed methodology, using respectively data
about marriage and fertility timing in a sample of 266 American women and about
the adoption of two interrelated technologies by 552 Italian metalworking plants.
Section 9 concludes.
2. Some preliminary definitions

In a general setting (see Florens and Fougère, 1996), a mathematically rigorous
definition of non-causality based on predictability requires the specification of the
stochastic process to be predicted, the available information set, and the reduced
information set. Although several generalizations exist, we will briefly review here
the concept of discrete-time one step ahead strong non-causality (the terminology is
drawn from Florens and Fougère, 1996). Here one step ahead (as opposed to global)
is referred to the prediction horizon, whereas strong (as opposed to weak) means that
the focus is on predicting the whole distribution, rather than just the mean. Notice
that Granger’s (1969) original definition is stated in terms of the mean. Chamberlain
(1982) and Florens and Mouchart (1982) propose the definition involving the whole
distribution (see also Granger, 1988).

Let fY t ¼ ðY
1
t ;Y

2
t Þ; t 2 I � N ¼ f1; 2; . . .gg; or fY tg for short,

2 be a discrete-time
stochastic process on a probability space ðO;A;PÞ: The statistical problem of non-
causality is to test whether P satisfies non-causality conditions. The available
information is described by the filtration fFt; t 2 Ig ¼ fFtg: For simplicity, we will
assume here that fFtg is the canonical filtration associated with the stochastic process
fðY t;X tÞg ¼ fðY

1
t ;Y

2
t ;X tÞg;

3 where fY 1
t g; fY

2
t g and fX tgmay either be scalar or vector

processes. The reduced information set is represented by the canonical filtrations
fG1

t g ¼ fsfðY
1
s ;X sÞ; 1psptgg and fG2

t g ¼ fsfðY
2
s ;X sÞ; 1psptgg: Let then fY1

t g; fY
2
t g
2The following notation is used through the paper: fZtg denotes a stochastic process, Zt being the value

of the process at time t; fztg and zt represent the corresponding realizations. Moreover, Pfztjwtg is adopted

as a short notation for PfZt ¼ ztjW t ¼ wtg: The equality between random variables is always to be

intended almost surely.
3The canonical (or self exciting) filtration associated with the process fZtg defined on ðO;A;PÞ is a

family fFtg of sub-s-fields of A; where Ft ¼ sfZs; 1psptg: Intuitively, Ft represents the history of fZtg

up to time t.
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and fYtg be the canonical filtrations associated with the processes fY 1
t g; fY

2
t g

and fY tg; respectively. Notice that Y1
t � G1

t �Ft; 8t 2 I ; and similarly Y2
t � G2

t �

Ft; 8t 2 I :
In the paper, we will adopt the following definitions, stated in terms of conditional

independence of sub-s-fields of A (see Florens and Mouchart, 1982, Appendix, for
the relevant results about conditional independence).

Definition 2.1. Strong one step ahead Granger non-causality: fY 2
t g does not strongly

cause fY 1
t g one step ahead, given fG1

t�1g; briefly Y 1KY 2; if

Y1
t@Y2

t�1 jG
1
t�1 8t 2 I . (1)

Similarly, fY 1
t g does not strongly cause fY 2

t g one step ahead, given fG2
t�1g; briefly

Y 1QY 2; if

Y2
t@Y1

t�1 jG
2
t�1 8t 2 I . (2)

Definition 2.2. Strong simultaneous independence: fY 1
t g and fY 2

t g are strongly

simultaneously independent given fFt�1g; briefly Y 1 =3Y 2; if

Y1
t@Y2

t jFt�1 8t 2 I . (3)

Notice that the term simultaneous in the latter definition has exactly the same
meaning as instantaneous in Geweke (1984) and Granger (1988). A different term is
suggested here since Florens and Fougère (1996) observe that one step ahead non-
causality in discrete time has an analogue in continuous time when the time distance
between ‘‘cause’’ and ‘‘effect’’ goes to zero, a circumstance that they define as
instantaneous causality. Therefore, they use instantaneous as a synonym for discrete-
time one step ahead causality, while they do not give any definition similar to (3).
Moreover, for the simultaneous condition (3), the term dependence is proposed
instead of causality (as in Granger, 1988) or feedback (as in Geweke, 1984), since the
notion is completely a-directional in nature (not even bi-directional).

In the macroeconometric literature, in order to make such general definition
operational, fY tg is assumed to be a continuous process belonging to the class of
Vector ARIMA processes, exogenous processes fX tg are seldom included in the
information set (so that G1

t and G2
t do coincide with Y1

t and Y2
t ; respectively), and

one single realization of fY tg is observed. Conversely in a microeconometric discrete
choice setting, we will assume that N individual realizations ði ¼ 1; . . . ;NÞ of the
process are observed, with t ¼ 1; . . . ;T : As we will see, depending on the dynamic
structure of the model, N may have to be large with respect to T, but if very simple
dynamic structures are assumed, a small N, or even N ¼ 1; can be enough if T is
large. Notice that, in microeconometric settings, fX tg is needed to model individual
heterogeneity, and may well include some time-fixed variables.

In our framework, at any time t 2 f1; . . . ;Tg; the state space of Y t ¼ ðY
1
t ;Y

2
t Þ is

given by the following states: fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þg: Basically the model can be
represented by the diagram in Fig. 1, where each box represents one of the four states
where the process could belong at time ðt� 1Þ; and the arrows represent the
transitions which may occur at time t.
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Fig. 1. State-transition diagram for a binary bivariate Markov model.
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Let us illustrate how definitions (1)–(2)–(3) can be made operational by applying
them to a precise stochastic process and information set. To make the simplest
possible example, let us restrict the information set to the canonical filtration
associated with fY tg; and furthermore make the assumption that fY tg is a first-order

Markov process (or Markov chain), so that Pfytjyt�1; . . . ; y1g ¼ Pfytjyt�1g: The most
restrictive definition of Markov process requires that the transition probabilities do
not vary over time. More specifically, under this assumption the process is defined a
Markov chain with stationary transition probabilities. Notice that this alone does
exclude any impact of covariates on the transition probabilities. In this simplified
framework, the definitions given above specialize as follows.

Definition 2.3. Strong one step ahead non-causality for a Markov chain with
stationary transition probabilities: Y 2

t�1 does not strongly cause Y 1
t one step ahead,

given Y 1
t�1; if

4

Pfy1
t jyt�1g ¼ Pfy1

t jy
1
t�1g 8t 2 f2; . . . ;Tg. (4)

Similarly, Y 1
t�1 does not strongly cause Y 2

t one step ahead, given Y 2
t�1 if

Pfy2
t jyt�1g ¼ Pfy2

t jy
2
t�1g 8t 2 f2; . . . ;Tg. (5)

Definition 2.4. Strong simultaneous independence for a Markov chain with
stationary transition probabilities: Y 1

t and Y 2
t are strongly simultaneously
4The equivalence between (1) and (4) in this framework comes immediately by noticing that, under the

Markov assumption and the assumption that the information set Ft�1 coincides with Yt�1; the

conditional independence statement (1) implies Pfy1
t ; y

2
t�1jy

1
t�1g ¼ Pfy1t jy

1
t�1g � Pfy

2
t�1jy

1
t�1g; 8t 2

f1; . . . ;Tg; which in turn implies (4). The same argument holds for the other definitions.
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independent given Y t�1 if

Pfytjyt�1g ¼ Pfy1
t jyt�1g � Pfy

2
t jyt�1g 8t 2 f2; . . . ;Tg (6)

or equivalently

Pfy1
t jy

2
t ; yt�1g ¼ Pfy1

t jyt�1g 8t 2 f2; . . . ;Tg

or equivalently

Pfy2
t jy

1
t ; yt�1g ¼ Pfy2

t jyt�1g 8t 2 f2; . . . ;Tg.

The appropriate statistical model where these conditions can be tested is the joint
distribution of Y t given Y t�1: Granger non-causality conditions involve only the
marginal distributions of Y 1

t and Y 2
t (conditional on Y t�1), whereas testing for

simultaneous independence requires the joint distribution to be fully specified, and
compared to the product of the marginal distributions. Notice that, since Y t�1; as
well as Y t; can belong to a finite set of four states, the most general model
representing Pfytjyt�1g involves 16 parameters, corresponding to the transition
probabilities from each of the states in ðt� 1Þ to each of the states in t (or some one-
to-one transformation of the transition probabilities). More precisely, since the sum
of the transition probabilities for transitions starting from each of the states is equal
to 1, only 12 parameters are enough to describe the conditional distribution
completely.
3. A Markov dynamic bivariate probit model for homogeneous population

Essentially, the type of data set in which we want to check for non-causality
consists in observations on the choices of N individuals facing two interacting binary
choices in discrete time. It seems therefore natural to use, as a statistical model, a
dynamic version of a bivariate discrete choice model. In this section, we introduce a
dynamic bivariate probit model, derived using a latent regression approach.5

Alternative specifications of the logit type have been considered, but they have been
discarded since writing non-causality constraints seems much more difficult: this will
be briefly discussed at the end of this section.6

In this section, the following assumptions are maintained:
�

mu

Dy
the population is homogeneous (no covariates are introduced);

�
 the process is first-order Markov (all the information from the history of the

process which is relevant for the transition probabilities in t is represented by the
state of the process in ðt� 1Þ).
5The univariate static probit model is well known. The first attempt to extend the model in a

ltivariate direction based on a latent regression approach is due to Ashford and Sowden (1970).

namic versions of the univariate probit model are discussed, for example, in Heckman (1978, 1981).
6We refer to Amemiya (1981) for a survey of multivariate binary regression models.
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These simplifying assumptions will both be relaxed in Section 4.
In order to use the bivariate probit setting to represent the distribution of Y i;t ¼
ðY 1
i;t;Y

2
i;tÞ

T conditionally on the state of the system in ðt� 1Þ; it is convenient to
remark that the state in ðt� 1Þ can be defined by the four dimensional function of
yi;t�1:

si;t�1 ¼ ð1; y
1
i;t�1; y

2
i;t�1; y

1
i;t�1y

2
i;t�1Þ

T.

In fact, si;t�1 is an invertible linear transformation of

sni;t�1 ¼ ½ð1� y1
i;t�1Þð1� y2

i;t�1Þ; y
1
i;t�1ð1� y2

i;t�1Þ; ð1� y1
i;t�1Þy

2
i;t�1; y

1
i;t�1y

2
i;t�1�

T,

where sni;t�1 involves four mutually exclusive dummies representing the four states of
the process in ðt� 1Þ:7 The reason for using si;t�1 instead of sni;t�1 (or yi;t�1 directly) to
describe the state in ðt� 1Þ is that, by doing so, the non-causality restrictions are
more easily written and interpreted.

Each individual i has to make two binary choices at time t, i.e., to choose the value
of the binary bivariate vector Y i;t: The latent regression approach assumes that the
individual will choose Y 1

i;t ¼ 1 when a latent continuous random variable Y 1n
i;t crosses

a threshold which, with no loss of generality, is set equal to zero. The same holds for
Y 2

i;t: In the current framework, the distribution of the latent variables is assumed to
depend on the choice made in ðt� 1Þ: The latent regression is therefore given by:

y1n
i;t ¼ bT1 si;t�1 þ �

1
i;t,

y2n
i;t ¼ bT2 si;t�1 þ �

2
i;t. ð7Þ

As usual in the multivariate probit setting, a standardized bivariate normal
distribution is then assumed for �i;t ¼ ð�1i;t; �

2
i;tÞ:

�i;t ¼
�1i;t

�2i;t

 !
�iidN

0

0

� �
;

1 ri;t

ri;t 1

" # !
, (8)

where the correlation ri;t is assumed to depend on the state si;t�1 as follows:

ri;t ¼
2 expðgTsi;t�1Þ

1þ expðgTsi;t�1Þ
� 1. (9)

The logit-type functional form in (9) is chosen so as to bound the correlation
coefficient between �1 and 1 and is known as z-transformation (see Fisher, 1921;
Hotelling, 1953): other choices are possible (see e.g. Morimune, 1979). Standardizing
the variances to be equal to 1 is needed for identification purposes, and implies no
loss of generality. Notice that the assumption that �i;t is independently distributed
7Obviously, si;t�1 ¼ Qsni;t�1; with

Q ¼

1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

2
666664

3
777775.
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matches perfectly the Markov assumption, since failure of this condition means that
there is some information left in the history of the process after conditioning on si;t�1:

A compact notation for the latent regression is

yn

i;t ¼ BTsi;t�1 þ �i;t; �i;t�iidNð0;RÞ,

where yn
i;t ¼ ðy

1n
i;t ; y

2n
i;t Þ

T; �i;t ¼ ð�1i;t; �
2
i;tÞ

T; B ¼ ½b1;b2� and R ¼ 1
ri;t

ri;t

1

h i
:

The distribution of Y i;t can be elegantly written by introducing the diagonal
matrix Dyi;t

¼ 2 diagðyi;tÞ � I2: It is easily computed that

Pðyi;tjyi;t�1Þ ¼ PðDyi;t
ðBTsi;t�1 þ �i;tÞ40Þ ¼ Pð�Dyi;t

�i;toDyi;t
BTsi;t�1Þ.

Our normality assumption for �i;t implies that

PðY i;t ¼ yi;tjyi;t�1Þ ¼ F2ðDyi;t
BTsi;t�1; 0;Dyi;t

RDT
yi;t
Þ, (10)

where F2ð�; m;SÞ denotes the integrated bivariate normal with mean m and covariance
matrix S:

Notice that B is a 4� 2 matrix, while g is a 4-dimensional vector; therefore, as a
whole, the distribution (10) depends on 12 parameters freely varying in R12; such
parameters can be easily shown to be a bijective transformation of the probabilities
associated to the transitions illustrated in Fig. 1. Notice that the marginal
distribution of Y 1

i;t and Y 2
i;t (given yi;t�1) is given by

Pfy1
i;tjyi;t�1g ¼ F1ðð2y1

i;t � 1ÞbT1 si;t�1; 0; 1Þ, (11)

Pfy2
i;tjyi;t�1g ¼ F1ðð2y2

i;t � 1ÞbT2 si;t�1; 0; 1Þ. (12)

The conditions for strong one step ahead non-causality and strong simultaneous
independence are easily stated as restrictions on the parameter space of (10):

H1K2 ðY
1KY 2Þ : b1 ¼ H1j1, (13)

H1Q2 ðY
1QY 2Þ : b2 ¼ H2j2, (14)

H1=32 ðY
1 =3Y 2Þ : g ¼ 0, (15)

where

H1 ¼

1 0

0 1

0 0

0 0

2
6664

3
7775; H2 ¼

1 0

0 0

0 1

0 0

2
6664

3
7775. (16)

Under H1K2; y2
t�1 and y1

t�1y2
t�1 are excluded from (11), so that Pfy1

i;tjyi;t�1g ¼

Pfy1
i;tjy

1
i;t�1g: Similarly, under H1Q2; y1

t�1 and y1
t�1y2

t�1 are excluded from (12), so that
Pfy2

i;tjyi;t�1g ¼ Pfy2
i;tjy

2
i;t�1g: Finally, under H1=32; ri;t is equal to zero, and hence the

joint distribution (10) factors out in the product of the marginal distributions (11)
and (12).
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To assess the degree of generality of the proposed probit model, it seems
important to compare it with alternative specifications found in the literature, mainly
belonging to the logit class. We consider two different approaches:
�

dis

sim
Logistic model: apparently it would be simple to modify the bivariate dynamic
probit model to get a bivariate dynamic logit model, by replacing the bivariate
normal with a bivariate generalization of the logistic distribution (see e.g.,
Amemiya, 1981, p. 1531). However, the available generalizations, proposed in
Gumbel (1961), have the disadvantage that the correlation is constrained to be
equal to 0.5 for the Gumbel’s type A bivariate logistic distribution and between
�p2=3 and p2=3 for the Gumbel’s type B bivariate logistic distribution (see
Johnson and Kotz, 1972, pp. 291–294). This lack of flexibility in the distribution of
the errors in the latent regression implies a restriction on the degree of
simultaneous dependence of the observed process, and is therefore highly
undesirable in general, and even more given the purpose of this paper.

�
 Log-linear model: this model is described, for example, in Morimune (1979,

p. 957) and Amemiya (1981, p. 1528), and it is not derived using the latent
regression approach. Unlike the previous one, it does not impose any restriction
on the degree of correlation of the process. However, while the condition for
strong simultaneous independence is easily written in the log-linear model, the
conditions for strong one step ahead non-causality are not. In fact, strong one step
ahead non-causality implies a rather complex non-linear constraint on the
parameters.8 This extra complexity does not seem justified in the absence of
covariates, since in this case the bivariate log-linear model is completely equivalent
to the bivariate probit model, both being one to one reparameterizations of the
transition probabilities: therefore the maximized likelihood will be the same for
the two models. Notice however that the equivalence fails when covariates are
introduced, since the way covariates affect the transition probabilities is obviously
different in the probit and logit models. It might therefore be useful, before the
non-causality analysis is carried on, to test for the appropriateness of the probit
specification, see for example Morimune (1979) or Murphy (1994). If the
preliminary analysis selects the logit specification, the present approach needs to
be adapted: a complete analysis of the logit specification is beyond the scope of
this paper.

4. Introducing covariates and relaxing the first-order Markov hypothesis

In this section, the model presented in Section 3 will be extended in two directions.
First we will relax the assumption of stationary transition probabilities by
introducing covariates, in order to account for individual and/or time heterogeneity.
8Morimune (1979, p. 958) briefly illustrates a modified version of the logistic model where the marginal

tributions are standard univariate logits. In this model, non-causality constraints are linear, but

ultaneous independence implies a non-linear constraint.
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This will be done under the first-order Markov assumption. Then we will drop the
first-order Markov assumption to allow for more complex dynamics: this will be
done in the absence of covariates. Relaxing both hypotheses is straightforward and
left to the reader. Some general remarks about possible extensions of the model
conclude the section.

4.1. Extending the information set

The information set available to predict Y t is now enlarged to
Ft�1 ¼ Yt�1 _Xt�1:

9 It is important to remark that Xt�1 could be replaced by
Xt; since this is simply a matter of time translation which, from a mathematical
perspective, is completely irrelevant in the following discussion. However, for the
economic interpretation of the results, if Ft�1 contains information on covariates
observed at time t (and not yet at time t� 1), then this requires that these covariates
are ‘‘valid conditioning variables’’, in the sense that the distribution of Y t given the
past and current X t represents the economic mechanism that we want to analyse.
This valid conditioning requirement is violated when Y t and X t are ‘‘jointly
dependent’’, i.e., when X t is an endogenous regressor in the usual econometric sense.

Let us first maintain the first-order Markov assumption, and for notational
simplicity let us also assume, without loss of generality, that all the information in
Xt�1 which is relevant for the transition probabilities in t is given by X t�1:

Extending model (10) so that the transition probabilities depend on xt�1 can be
easily done replacing si;t�1 with

zni;t�1 ¼ ½s
T
i;t�1; x

nT
i;t�1�

T, (17)

where xn
i;t is the part of xi;t which is linearly independent of si;t (typically, if xi;t

includes the constant, it has to be dropped to avoid perfect collinearity with si;t). If
we denote by k the dimension of xi;t; and by kn the dimension of xn

i;t; then B and g will
be now of dimension ð4þ kn

Þ � 2 and ð4þ kn
Þ � 1: It is important to point out that

this way to include the covariates amounts to assuming that the impact on the
transition probabilities is the same irrespective of si;t�1; so that the effect of the
covariates is the same whatever state the individual belongs to in ðt� 1Þ: A more
general model, allowing for interaction among the covariates and the state of the
process in ðt� 1Þ; i.e., si;t�1; ensues from using in (10), instead of si;t�1;

zi;t�1 ¼ si;t�1 � xi;t�1. (18)

Notice that, in this case, B and g will be of dimension 4k � 2 and 4k � 1; so that
many more parameters have to be estimated. Conforming to a similar tradition in
log-linear models, we will refer to the model deriving from (18) as saturated model,
while the model deriving from (17) will be referred to as unsaturated. Notice that the
unsaturated model is nested in the saturated one, and therefore the decision about
which one is convenient for describing the data may be empirically based, for
9Let M1 and M2 be s-fields. M1 _M2 denotes the s-field generated by M1 [M2: Hence fFtg ¼

fYt _Xtg corresponds to the canonical filtration associated to fðY t;X tÞg:
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example, on likelihood ratio tests. A simple example may help understanding the
difference between the two models. Assume that each individual i belongs, at any
time t, to either one or the other of two mutually exclusive and exhaustive classes C1

and C2: Define

D1
i;t ¼ 1findividual i2C1 at time tg; D2

i;t ¼ 1findividual i2C2 at time tg,

so that D1
i;t þD2

i;t ¼ 1: Let X i;t ¼ ðD
1
i;t;D

2
i;tÞ

T: In this setting, one may take xn
i;t ¼ d1

i;t;
and therefore zni;t�1 and zi;t�1 are respectively defined by (17) and (18). The most
striking difference between the saturated and unsaturated model in this case is that,
in the unsaturated model, X i;t (i.e., belonging to class C1 or C2) has the same impact
(positive or negative or none) on the probability of Y 1

i;t and Y 2
i;t irrespective of the

state in ðt� 1Þ: Conversely, in the saturated model, X i;t may have, say, a positive
effect on the probability of Y 1

i;t if Y i;t�1 ¼ ð0; 0Þ
T; and no effect on the probability of

Y 1
i;t if Y i;t�1 ¼ ð1; 0Þ

T:
The conditions for Granger non-causality in the presence of covariates are

formally identical to (13) and (14), but the restriction matrices are defined as follows
for the unsaturated model:

Hn

1 ¼
H1 0

0 Ikn

" #
; Hn

2 ¼
H2 0

0 Ikn

" #
,

while, for the saturated model the matrices are Hn
1 ¼ Ik �H1 and Hn

2 ¼ Ik �H2: It
is easily checked that these restrictions matrices exclude all the regressors involving
y2

t�1 from Pfy1
i;tjyi;t�1;xi;t�1g; and all the regressors involving y1

t�1 from
Pfy2

i;tjyi;t�1;xi;t�1g: As for the simultaneous independence condition (15), it remains
unchanged, since ri;t must be identically equal to zero for all ði; tÞ in order to factor
out the joint distribution (10) into the product of the marginal (11) and (12), which
requires that ri;t does not depend on covariates.

So far we have discussed observed heterogeneity. However, in microeconomic
applications it is customary to assume also some degree of unobserved heterogeneity,
by introducing fixed or random effects. Extending the notion of fixed and random
effects to dynamic discrete choice models is extremely difficult, due to the non-
linearity of such models. Even in the univariate case there is no completely
satisfactory solution to the problem. A discussion may be found in Chamberlain
(1984), Maddala (1987), Wooldridge (2002) and Honoré (2002). Formally, the fixed
effects dynamic probit model might be easily extended to our multivariate setting by
adding individual dummies to si;t: However, it is easily demonstrated that, due to the
incidental parameters problem, maximum likelihood estimates in this model are
consistent in general only when T !1 (even if N is fixed). Conversely, when T is
small, the random effects model seems convenient. The random effects model may be
extended in the bivariate case by introducing a random variable indexed with i in
each of the equations in (7). If a parametric distribution (e.g., a bivariate normal
distribution) is chosen for the random effects, they can be integrated out as in the
univariate case. As illustrated in Wooldridge (2002), it may be convenient to
condition the distribution of the unobserved individual effects upon the first
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observation yi;1 and the explanatory variables: this approach leads to manageable
estimators that are consistent when N !1 and T is fixed. Notice that strict
exogeneity of the covariates, which is not necessary in general for non-causality
analysis, seems to be needed in the presence of random effects (see Wooldridge, 2000).

4.2. Relaxing the first-order Markov assumption

Let us now relax the first-order Markov assumption. This will be done in the spirit
of AutoRegressive models: models based on ARMA-like extensions, like those
developed in the univariate case by Heckman (1978, 1981), will not be discussed here.
For the sake of simplicity, we go back to the assumption that the information set
available in t is Yt�1 (no covariates). Consider first the case where the relevant
information for the transition probabilities is given by the last two states visited by
an individual, rather than the last one only. There are therefore 16 possible paths
followed in ðt� 2Þ and ðt� 1Þ; at the end of which the individual may choose among
four states. Hence, the most general model one may use to describe Pfyi;tjyi;t�1; yi;t�2g

requires 16� ð4� 1Þ ¼ 48 transition probabilities.10

This model can be written in the form (10) by replacing si;t�1 by s2i;t�1 ¼

si;t�1 � si;t�2; i.e., using the saturated model with xi;t�1 ¼ si;t�2: To generalize to the
case in which the last ‘ states visited are relevant for the transition probabilities, then
s‘i;t�1 ¼ si;t�1 � si;t�2 � � � � � si;t�‘ has to be used in (10) instead of si;t�1: It seems
natural to refer to this model as bivariate Probit Vector AutoRegressive model of
order ‘; or PVAR(‘). We will call PVARX(‘) the model in which exogenous
covariates are also included. Notice that the number of parameters does increase
very rapidly, since B and g will be of dimension 4‘ � 2 and 4‘ � 1: The dynamic
structure of the process may be simplified by using the unsaturated model rather
than the saturated one, which would dramatically reduce the number of parameters
to 3� ð3‘ þ 1Þ; although the interpretation of the ensuing model is unclear. A further
simplification could be based on the following underlying latent regression:

yn

i;t ¼ mþ
X‘
j¼1

Ajyi;t�j þ �it, (19)

where yn
i;t ¼ ðy

1n
i;t ; y

2n
i;t Þ; Aj ð j ¼ 1; . . . ; ‘Þ are 2� 2 parameter matrices, m is a 2� 1

parameter vector, and �i;t is the vector defined in (8) with ri;t ¼ r: The total number
of parameters is further reduced to 4‘ þ 3: Although this model resembles the usual
VAR closely, the left-hand side involves the latent variabes yn; while the right-hand
side involves the binary variables y. In principle, a proper VAR in terms of the latent
variables, like

yn

i;t ¼ mn þ
X‘
j¼1

An

j yn

i;t�j þ �
n

it (20)
10It is easily shown that this second-order Markov 4 states model can be rewritten as a first-order

Markov 16 states model, where 192 out of the 162 transition probabilities are set to zero, while 16

transition probabilities can be written as linear functions of the remaining 48.
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could be used. The univariate version of such model is introduced and discussed in
Heckman (1981) and Grether and Maddala(1982). Dueker (2001) and Dueker and
Wesche (2001) generalize the model to a VAR with one latent variable and several
observed variables, and show how their model can be estimated using MCMC
techniques; multivariate extensions with two or more binary variables do not seem to
be thoroughly discussed yet. The interpretation of this type of model usually found
in the literature is that the propensities to choose y1

i;t ¼ 1 and y2
i;t ¼ 1 depend on past

propensities rather than past choices. Notice that while model (19) is nested in (10),
(20) is not, and therefore the two models are non-nested in each other. More
precisely, it is highlighted for example in Maddala (1987) that models like (20) imply
that transition probabilities depend on the entire history of the observed process yi;t:
therefore, under (20) yi;t is not a Markov chain. Of course, non-causality analysis
within models (10)–(19) and (20) could give conflicting results. Therefore, a proper
discussion of model (20), as well as the development of tests for comparing such
model with (10)–(19) would be interesting, but are beyond the scope of this paper.

For the unrestricted PVAR(‘) model, the Granger non-causality conditions are
formally identical to (13) and (14), but the restriction matrices are defined as Hn

1 ¼

H�‘1 and Hn
2 ¼ H�‘2 where A�‘ is the Kronecker product of ‘ copies of A. In this

case, the restrictions matrices exclude all the regressors involving y2
i;t�1; . . . ; y

2
i;t�‘

from Pfy1
i;tjyi;t�1; . . . ; yi;t�‘g; and all the regressors involving y1

i;t�1; . . . ; y
1
i;t�‘ from

Pfy2
i;tjyi;t�1; . . . ; yi;t�‘g: Again, the simultaneous independence condition (15) remains

unchanged. The restriction matrices for the restricted versions of the PVAR, as well
as those needed for the PVARX may be obtained accordingly.

Notice that some of the covariates can be deterministic functions of the past values
of yi;t: In this case, the coefficients of these variables have to be included in the test
for non-causality. This extension, while destroying the Markovian character of the
model, allows for considering much more general forms of dependence on the past
(see e.g., Heckman, 1978, 1981).
5. Estimation and testing

The purpose of this section is to discuss the properties of the parameter estimates
in model (10), as well as the properties of the tests for the hypotheses (13), (14) and
(15). Some hints will also be given about the generalizations illustrated in Section 4.
We will discuss the asymptotic properties of Maximum Likelihood estimates and LR
tests, although several other standard procedures for estimating and testing may be
used. Some finite sample results will also be illustrated.

5.1. Inference in the homogeneous model

We assume that each individual i; i ¼ 1; . . . ;N; is observed at each time t during a
period of known length t ¼ 1; . . . ;T ; the extension to the case of unbalanced panel in
which every individual i is observed for a length Ti is straightforward if we suppose
that Ti is a stopping time with respect to the filtration fFtg: The log-likelihood
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conditional on the first observation of each cross-sectional unit can be written in
compact form as:11

ln LNT ðyÞ ¼
XN

i¼1

XT

t¼2

lnF2 Dyi;t
Bsi;t�1; 0;Dyi;t

1 ri;t

ri;t 1

" #
DT

yi;t

 !
, (21)

where y is the parameter vector composed of B and g and ri;t is given by (9).
Let us discuss the asymptotics involved, by considering three cases:
�

ex

the

wh

tes

by

fð0
T !1; N finite,

�
 T finite, N !1;

�
 T !1; N !1:
To keep the notation simple, notice that the first-order Markov model for
homogeneous population can be written compactly, since it is equivalent to a
Markov model for the univariate process fUtg which, at any time t, takes on values
in a finite state-space U ¼ f0; 1; 2; 3g;12 with a stationary (or time-homogeneous)
transition probability matrix P ¼ ðPhkÞ; ðh; kÞ 2 U�U; P is clearly a stochastic
matrix, that is, PhkX0 8h; k; and

P
k2U Phk ¼ 1: Moreover we define the nth power

of P, Pn ¼ ðPn;hkÞ; where Pn;hk ¼ PfUtþn ¼ kjUt ¼ hg: The relevant asymptotic
theory for homogeneous Markov chains is presented in Anderson and Goodman
(1957) for N !1 and in Billingsley (1961) for T !1: However, we state some
results in the following that allow a unified treatment for N and T !1:

It is intuitive that to ensure consistent and asymptotically normal estimates of the
transition probabilities what is needed is that all the transitions whose probabilities
have to be estimated (i.e., are not known) can be observed infinitely many times as T

and/or N go to infinity. Through a Delta Method expansion, this will imply
corresponding asymptotic results for the estimators of y (for a related result for
Markov chains, see Theorem 4.1 in Billingsley, 1961). Thus, LR and Wald tests are
asymptotically w2 distributed under the null hypothesis.
A.1.
11W

trem

fir

eth

tab

int
12Th

; 0Þ
(necessary condition) Each state with at least one unknown exiting transition
probability must be visited infinitely often with probability 1 as either T or N or
both go to infinity.
A.2.
 (sufficient condition) Infinitely many of the individuals who have reached each
state with at least one unknown exiting transition probability must be observed
for at least one time period in that state.
e do not make any attempt to use the first observation of each cross-sectional unit. It is in fact

ely difficult, especially when heterogeneity is introduced, to make a distributional assumption on

st observation which is consistent with the dynamic multivariate probit model; it is also unclear

er such consistence is needed or not. We believe that introducing a rather arbitrary and hardly

le assumption is not justified by the possible gain in efficiency. Coherently, if the model is extended

roducing random effects, we suggest to follow Wooldridge (2002) in that respect.

e elements of U correspond element-wise with the elements of Y; defined as Y ¼

; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg; representing the state space of the process fY tg at any time t.
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In the following we will enunciate some results about the conditions on P under
which both the necessary and sufficient conditions are fulfilled. Let us first state the

condition when T !1 with N fixed.13

Lemma 5.1. Assume that P is such that each state with at least one unknown exiting

transition probability is persistent. Then Conditions A.1. and A.2. are fulfilled for

T !1 for any NX1:

The proof of the part related to Condition A.1. is in Billingsley (1995),
Theorem 8.2. Notice that each state of an irreducible Markov chain with finite
state space is persistent (Billingsley, 1995, Example 8.7). Therefore in our case, this
ensures that ML estimates show the usual asymptotic properties when T !1 for
any NX1; finite or infinite.

A similar result can be obtained when N !1; but it depends on the initial
conditions of the process. These are defined by a vector of initial probabilities p ¼

ðphÞ; representing, 8h 2 U; the probability of being in state h in t ¼ 1: Of course,
phX0; 8h 2 U; and

P
h2U ph ¼ 1:

Lemma 5.2. Assume that P and p are such that there exists at least a hk 2 U and a

finite integer nk such that phk
Pnk ;hkk40 for each state k 2 U with at least one unknown

exiting transition probability. Then:
(i)
13
Condition A.1. is fulfilled if N !1 for any T4maxfn̄k; k 2 Ug; where n̄k is, for

each k, the minimum nk such that phk
Pnk ;hkk40;
(ii)
 Condition A.2. is fulfilled if T4Tn ¼ maxfn̄k; k 2 Ug þ 1:
Notice that if pha0 8h 2 U; and the chain is irreducible, then the conditions on p

and P are met, and moreover Tn ¼ 1; so that the ML estimates show the usual
asymptotic properties when N !1 for T41; be it bounded or not. As a whole, the
conditions that pha0; for every h 2 U and that P is irreducible are sufficient,
although non-necessary, for consistency and asymptotic normality of the Maximum
Likelihood estimator with either T !1 or N !1; where in the latter case T must
be at least equal to 2.

Extension to higher-order Markovian models such as the PVAR(‘) are
straightforward, since it is always possible to rewrite a bivariate PVAR(‘) model
as a finite state-space Markov chain with 4‘ states, and hence the conditions stated in
Propositions 5.1 and 5.2 apply to the transition probabilities matrix and initial
probabilities vector corresponding to the new Markov chain.

Extension to unobserved heterogeneity modelled by fixed effects implies that the
transition probability matrix is different across individuals. Therefore, the results for
T !1 remain valid (with more severe finite sample problems) provided that the
conditions on P hold for every individual. Conversely, the results for N !1 with T

fixed cannot be extended due to the incidental parameters problem.
For definitions of irreducibility and persistence, see Billingsley (1995, Section 8).
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Let us briefly address some problems possibly arising in finite samples. In this case,
the transition probabilities are estimated essentially as the ratio of the number of
cases where the transition occurred (say, Nhk) over the number of cases where it
could have occurred (say, Nh). In any finite sample, the distribution of Nhk given Nh

will be Binomial, and will hence converge in distribution to the Normal as Nh !1

(see Anderson and Goodman, 1957; Billingsley, 1961; and Gouriéroux, 2000,
Chapter 6). Propositions 5.1 and 5.2 state conditions which ensure divergence of Nh

with either N (Proposition 5.1) or T (Proposition 5.2), and convergence to normality
of the distribution of the ratio Nhk

Nh
: Notice however that, for states which have been

visited few times (Nh small), the distribution of Nhk given Nh may be very far from
normality, especially when the true transition probability Phk is close to zero or one,
which will give highly skewed distributions. In any case, in order to get an idea of
how reliable the asymptotic distribution can be, it is convenient to check the number
of observations in each state with at least one unknown exiting transition
probability. In fact, even if N � T is large, the information about some of the
transitions may be quite poor.

5.2. Inference in the model with covariates

Let us now discuss the conditions for consistency and asymptotic normality in the
model with covariates. Since the cross-section case (in which T is finite and N !1)
appears as a modification of the theory for iid random variables, we consider only
the time series case, in which N ¼ 1 and T !1; and we remove any reference to the
index i. We rely on the partial likelihood concept as developed by Cox (1975), Wong
(1986) and Fokianos and Kedem (1998). The last reference is particularly relevant
for our purposes, since the asymptotic properties of a generalized linear model for
categorical data are studied in the context of partial likelihood.

Let fFtg be a filtration and fY tg be a time series such that Y t isFt-measurable for
any t. Usually, we will take Ft ¼ sfðY s;X sÞ; 1psptg: With some notational
imprecision, let us denote by f ðytjFt�1; yÞ the density of Y t given Ft�1; where y is a
parameter vector. The partial likelihood of y based on fY t;Ftg; is given by

LT ðyÞ ¼
YT
t¼2

f ðytjFt�1; yÞ. (22)

The only conditions for writing this form of likelihood are that fFtg is a filtration
and Y t is adapted to Ft for any t. If fY tg does not Granger cause fX tg (or
equivalently fX tg is strictly exogenous for fY tg; see Chamberlain, 1982), then the
partial likelihood is equivalent to the classical conditional likelihood defined by
f ðy2; . . . ; yT jx1; . . . ;xT�1; yÞ:

14 However, the properties of inference based on partial
likelihood do not depend on strict exogeneity of fX tg in any manner.
14For an example, see Kaufmann (1987), where the same model of Fokianos and Kedem (1998), is

studied.
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The following assumptions allow for deriving the asymptotic properties of the
estimates of y; say ŷT ; obtained by maximizing (22). In the following, Zt is a vector
of regressors representing the relevant information in Ft; in other words, Zt is a
vector of functions of current and past values of Y t and X t: Examples are given in
(17) or (18), but nothing compels the process fY tg to be Markovian of any order
since complex functions of the past of fY tg can also be included in fZtg provided they
respect the conditions given below.
B.1.
15In
16T

Gray
The statistical model is described by the conditional distribution of Y t given
Zt�1 (see the models described in Section 4), for y 2 Y; where Y is an open and
bounded subset of a suitable Euclidean space.
B.2.
 The true conditional probability of Y t given Zt�1 is obtained for a value y0 2 Y:P

B.3.
 T

t¼1 ztz
T
t is almost surely non-singular for any T large enough.
B.4.
 For any t, Zt lies in a non-random compact subset G of a suitable Euclidean
space Rd :
B.5.
 The empirical cdf of the data fz1; . . . ; zT�1g converges almost surely to a cdf F;
moreover, F is such that

R
Rd zzT dF ðzÞ is positive definite.
We will not prove rigorously the results: the proof of Fokianos and Kedem (1998)
can be adapted to deal with our model too. However, we discuss the assumptions in
some detail.

Notice that the compactness of G (B.4.) and the boundedness of y0 (B.1.) imply
that all the transition probabilities PðY t ¼ ytjZt�1; y0Þ are bounded away from 0
and 1.15 This guarantees the fulfillment of Conditions A.1. and A.2. given in the
previous subsection for the model with no covariates.

The boundedness of Y (B.1.) and G (B.4.) ensures that the score and the Hessian
are bounded. Moreover, the score evaluated at y0 is a square-integrable zero mean
martingale (see Wong, 1986; Fokianos and Kedem, 1998): through the LLN and CLT

for martingales, this entails that
ffiffiffiffi
T
p
�
q ln LT ðyÞ

qy jy¼y0 converges to a centered Gaussian

random vector. The non-singularity of
PT

t¼1 ztz
T
t in B.3. guarantees that the Hessian

is well-defined and invertible in finite samples, while B.5. ensures that the Hessian is
also invertible in the limit. Assumption B.5. entails the convergence of functions of

fZtg of the form T�1
PT

t¼1 f ðztÞ; such as the Hessian, to a non-random limit and is

quite standard in the econometric literature (see Amemiya, 1973, p. 999).16

Under these assumptions, the probability that a locally unique maximum
likelihood estimator exists converges to 1, and there exists a sequence of
maximum partial likelihood estimators ŷT which is consistent and asymptotically
normal:ffiffiffiffi

T
p
ðŷT � y0Þ �!

D
Nð0;I�1ðy0ÞÞ.
the Markov case with covariates, the chain, even if non-stationary, is irreducible.

his is an asymptotic mean ergodicity condition, allowing for a certain degree of non-stationarity (see

and Kieffer, 1980).
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The covariance matrix can be defined in three alternative ways. As usually, the
Hessian HT ðyÞ is given by HT ðyÞ ¼ � 1

T
q2 ln LT ðyÞ

qyqyT
: The conditional information matrix

GT ðyÞ is given by

GT ðyÞ ¼
1

T

XT

t¼1

Covy0
q ln LtðyÞ

qy
�

q ln Lt�1ðyÞ
qy

����Ft�1

� �

¼
1

T

XT

t¼1

Covy0
q lnPfY tjZt�1; yg

qy

����Zt�1

� �
.

The unconditional information matrix is F T ðyÞ ¼ Ey0 ½GT ðyÞ�: Under the assumptions,
the three expressions for the covariance matrix coincide asymptotically:

FT ðŷT Þ ¼ GT ðŷT Þ þ oPð1Þ ¼ HT ðŷT Þ þ oPð1Þ ! Iðy0Þ.

The asymptotic theory of the usual tests (Wald, LM and LR) is standard.
As concerns asymptotic efficiency, an assumption of weak exogeneity of the

covariate process fX tg with respect to y is obviously needed (see Engle et al., 1983, p.
277–278), since otherwise efficient estimates of y would require the complete
specification of the marginal density of fX tg: More precise remarks on the
asymptotic efficiency of the estimator can be found in Wong (1986), for the general
case, and in Slud and Kedem (1994), for the case of a logistic autoregression.

Also the Eicker–White sandwich matrix can in principle be used:

HT ðŷT Þ
�1ĜT ðŷT Þ �HT ðŷT Þ

�1.

This is reasonable when the PVAR is not supposed to be the true model and causality
testing is just intended to be an exploratory tool. In this case, more robustness
against stronger forms of dependence can be obtained using a HAC (heteroskedas-
ticity and autocorrelation consistent) estimator of GT ðŷT Þ (see Davidson, 2000,
Section 9.4.3, and references therein).
6. Non-causality with survival data

Special cases of the model discussed in Sections 3 and 4 can be obtained when
some of the transition probabilities are set to 0. In the following section we will deal
with the case of survival models,17 i.e., models in which the states with Y

j
t ¼ 0 are not

accessible from the states with Y
j
t�1 ¼ 1; j ¼ f1; 2g; this implies that every decision

with respect to a variable Y
j
t is in a certain sense irreversible. This implies that 7 out

of 12 transitions illustrated in Fig. 1 have zero probability, leaving only five
unrestricted transition probabilities, as illustrated in Fig. 2.

It is convenient to consider first state 0 (corresponding to Y t ¼ ð0; 0Þ
T) from which

all states can be reached; therefore the choice can be modelled through a bivariate
17A standard reference for survival models is Kalbfleisch and Prentice (1980). A counting process

perspective on these models is in Andersen et al. (1993). A review of multivariate survival models is

Hougaard (1987).
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Fig. 2. State-transition diagram for a bivariate survival model.
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probit model:

Pfyi;tjY i;t�1 ¼ ð0; 0Þ
T
g ¼ F2 Dyi;t

b10
b20

" #
; 0;Dyi;t

1 r

r 1

" #
DT

yi;t

 !
.

We have eliminated the subscript from r since no other correlation coefficient is

present in the model. It may be convenient to reparameterize the model using r ¼
expðg0Þ�1
expðg0Þþ1

so that all parameters vary in R:

When considering transitions from state 1 (that is Y i;t�1 ¼ ð1; 0Þ
T), it is important

to remark that the bivariate distribution Pfyi;tjY i;t�1 ¼ ð1; 0Þ
T
g collapses into its

marginal Pfy2
i;tjY i;t�1 ¼ ð1; 0Þ

T
g; since PfY 1

i;t ¼ 1jY i;t�1 ¼ ð1; 0Þ
T
g ¼ 1: A similar

argument holds from state 2. Therefore we may write:

Pfy1
i;tjY i;t�1 ¼ ð0; 1Þ

T
g ¼ F1ðð2y1

i;t � 1Þðb10 þ b11Þ; 0; 1Þ,

Pfy2
i;tjY i;t�1 ¼ ð1; 0Þ

T
g ¼ F1ðð2y2

i;t � 1Þðb20 þ b21Þ; 0; 1Þ.

As a whole, the model includes five parameters (b10;b11; b20;b21 and g0), freely
varying in R5; which can be shown to be bijective transformations of the transition
probabilities.

Conditions for simultaneous independence and Granger non-causality can be
easily adapted from those introduced in Section 3, and take the particularly simple
form:

H1K2 ðY
1KY 2Þ : b11 ¼ 0,

H1Q2 ðY
1QY 2Þ : b21 ¼ 0,

H1=32 ðY
1 =3Y 2Þ : g0 ¼ 0.
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Also the introduction of exogenous variables can be accounted for by paralleling the
solutions presented in Section 4. Assume that the exogenous variables are
represented by a k-dimensional vector xi;t (including a constant): unsaturated
versions of the models may be obtained by replacing b10; b20 and g0 by linear
functions of xi;t; so that the total number of parameters becomes 3k þ 2; while
saturated versions may be obtained by replacing b11 and b21 also by linear functions
of xi;t (the number of parameters is raised to 5k). Of course, non-causality analysis
may be carried on in these models by setting to zero all parameters replacing b11 (for
H1K2), b21 (for H1Q2) or g0 (for H1=32).

Extending the model by relaxing the first-order Markov assumption requires some
caution. In fact, in this case conditioning on the lagged endogenous variables is
meaningful only when the individual is in state 1 or 2. Moreover, if individual i is in
state 1 at time t, then y2

i;t�j ¼ 0 for any jX0; and therefore only lagged y1
i;t need to be

introduced to describe the path followed by the individual to reach state 1. A similar
argument holds for state 2. The implication is that, in order to increase the dynamics
up to lag ‘; one should simply replace b11 by a linear function of
ðy1

i;t�1; y
1
i;t�2; . . . ; y

1
i;t�‘Þ and b21 by a linear function of ðy2

i;t�1; y
2
i;t�2; . . . ; y

2
i;t�‘Þ; the

total number of parameters becomes then 2‘ þ 3: Also in this case, non-causality
analysis may be carried on by setting to zero all parameters replacing b11 (for H1K2),
b21 (for H1Q2) or g0 (for H1=32). A more parsimonious representation could be
obtained by replacing b11 (and b21) by a function of the time spent in state 1 (and 2).
Of course, it is possible to develop models of order ‘ with exogenous variables:
unsaturated versions of the model are obtained by replacing b10; b20 and g0 only by
linear functions of xi;t; while saturated versions require that all the parameters
describing the dynamics are also replaced by linear functions of xi;t:

As for the asymptotic properties of the estimates and tests, notice that for this
model, even in the case of homogeneous populations, Proposition 5.1 does not hold,
since this model can be represented as a Markov chain with an absorbing state
corresponding to state 3. This means that N !1 is needed in order to ensure
consistency and asymptotic normality of the estimates.
7. An illustrative example for panel data

The model developed in Section 4 will be employed here to analyze the
relationship between marital status and the decision to have children. The analysis
is only meant to be an illustration of the methodology rather than a serious attempt
to model the decision process.18 We use data from the well-known PSID database.19
18Some papers have studied the dynamical interdependencies between marital duration and fertility

(Koo and Janowitz, 1983; Waite and Lillard, 1991; Lillard and Waite, 1993; Lillard, 1993).
19The Panel Study of Income Dynamics (PSID), begun in 1968, is a longitudinal study of a

representative sample of U.S. individuals (men, women, and children) and the family units in which they

reside. The study is conducted at the Survey Research Center, Institute for Social Research, University of

Michigan. Information about the original 1968 sample individuals and their current co-residents (spouses,

co-habitors, children, and anyone else living with them) is collected each year.
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Starting from all women appearing in the database from 1968 to 1993 (t ¼ 1; . . . ; 26),
subjects with missing covariates have been eliminated, leading to a sample of
266 individuals. The variables have been elaborated in order to yield a certain
uniformity over time. The data are available from the authors upon request, together
with a precise description of how they have been obtained starting from
PSID variables.

Therefore the following variables have been selected:
�

va
y1
i;t: the variable is set to 1 if individual i gave birth to (at least) one child during the

year t, 0 otherwise;

�
 y2

i;t: this variable is set to 1 if individual i was married during the year t, 0
otherwise.

The causal relationship between y1
i;t and y2

i;t will be analyzed conditioning on the
vector xi;t including the following covariates:
�
 agei;t: age of individual i in year t,

�
 age2i;t: age of individual i in year t squared,

�
 incomei;t: income of individual i in year t,

�
 hoursi;t: hours worked by individual i in year t,

�
 edui;t: years of school completed by individual i in year t.
As discussed in Section 4, in order to have an economically meaningful
interpretation of the results of non-causality analysis, simultaneous regressors
should not be endogenous. In this application, this means that they should not be
part of the same optimization problem leading to the decision about marriage and
maternity. Actually, income and hours might be regarded as endogenous in this sense.
However, for illustrative purpose, we maintain the exogeneity assumption, since the
alternative would complicate the example significantly. In fact, simply replacing
incomei;t and hoursi;t with incomei;t�1 and hoursi;t�1 would not be a convincing
solution, since two equations for incomei;t and hoursi;t should also be added. The
resulting system would be four dimensional, involving binary, continuous and count
variables: explicitly writing and testing non-causality restrictions in such a system is
possible in principle, but beyond the scope of this paper.20

The number of observations in each of the four states described in Fig. 1 is given in
Table 1, which shows that we have few observations in state ðy1; y2Þ ¼ ð1; 0Þ:

The first step in our analysis consists in determining the maximum lag of the
PVAR model, and whether the saturated or unsaturated version of the model is more
appropriate for the data. We will refer to the saturated and unsaturated models of
order j by Sj and Uj ; respectively. To reduce the dimension of the parameter space,
we have considered here restricted versions of the models, where ri;t is a function of
lagged si;t; but not of xi;t: Notice that Uj is nested in Sj and Ujþ1; while Sj is nested in
20See Dufour and Renault (1998) for the problems involved in testing for non-causality between two

riables in higher dimensional systems.
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Table 2

Information criteria for the estimated models

Models L p BIC

U1 �2980.79 22 �3077.87

U2 �2962.69 31 �3099.48

S1 �2894.40 52 �3123.86

S2 �2828.62 208 �3746.47

Table 1

Number of observations in each state

y1i;t ¼ 0 y1i;t ¼ 1

y2i;t ¼ 0 3274 151

y2i;t ¼ 1 2977 403
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Sjþ1 but non-nested in any of the unsaturated models. Therefore, there is no natural
ordering of the models, and this suggests to use information criteria for model
selection. For j ¼ 1; 2; we have computed the BIC criterion (Bayesian Information
Criterion, due to Schwarz, 1978) for both the unsaturated and saturated models. The
preferred model is selected by maximizing BIC ¼ lnðLÞ � p

2
lnM ; where L is the

likelihood,21 M is the number of observation (in our case, M ¼ 6805) and p is
the number of parameters. Table 2 shows that model U1 is preferred according to
BIC. Estimates of model U1 are given in Table 3.

Within this model, the non-causality relations between the two processes fY 1
t g and

fY 2
t g are tested through Wald tests, whose results are displayed in Table 4. The

results show the following:22
�

co

In

sat
the hypothesis H1K2; concerning the non-causality of Y 2 towards Y 1 is strongly
rejected: a marital relation seems to increase significantly the probability of having
a child, as common sense suggests.

�
 the hypothesis H1Q2; concerning the non-causality of Y 1 towards Y 2 is accepted.

Hence, fertility timing does not seem to have any impact on the marriage and
divorce decisions of American women.

�
 the hypothesis H1=32; concerning the simultaneous independence between Y 2 and

Y 1 is rejected. By using (9) to compute ri;t; and noticing that the only significant
21Estimation has been performed using GAUSS-386i and Ox Professional 3.0 (see Doornik, 1999). The

variance matrix of the estimates has been calculated through the cross-product of first derivatives.
22We have also checked whether the results of non-causality analysis are affected by the selected model.

this example, the results are exactly the same irrespective of the lag order and the choice about

uration.
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Table 3

Estimates of model U1

Usable observations 6805 Degrees of freedom 6783

Function value �2980:793
Variable Coeff. Std error T-stat Signif.

Children bearing equation ðPfy1i;tjyi;t�1; xi;tgÞ

1 CONST �3.871 0.417 �9.27 0.00

2 Y1_1 �0.309 0.263 �1.17 0.24

3 Y2_1 0.561 0.0641 8.75 0.00

4 Y1_1*Y2_1 �0.360 0.288 �1.25 0.21

5 AGE 0.226 0.0329 6.89 0.00

6 AGESQ �0.526 0.0594 �8.85 0.00

7 INCOME 0.687 0.585 1.17 0.24

8 HOURS �9.480 3.615 �2.62 0.01

9 EDU 0.0141 0.00786 1.79 0.07

Marriage equation ðPfy2i;tjyi;t�1; xi;tgÞ

1 CONST �2.432 0.421 �5.77 0.00

2 Y1_1 �0.170 0.293 �0.58 0.56

3 Y2_1 3.320 0.0719 46.18 0.0

4 Y1_1*Y2_1 �0.0270 0.327 �0.08 0.93

5 AGE 0.0348 0.0320 1.09 0.28

6 AGESQ �0.110 0.0574 �1.92 0.05

7 INCOME 0.0220 0.628 0.03 0.97

8 HOURS 1.427 3.831 0.37 0.71

9 EDU 0.0830 0.00921 9.01 0.00

Correlation

1 CONST 0.644 0.136 4.73 0.00

2 Y1_1 �2.171 433.675 �0.00 0.99

3 Y2_1 �0.389 0.238 �1.63 0.10

4 Y1_1*Y2_1 1.026 433.677 0.00 1.00

Table 4

Causality testing through Wald tests

Hypothesis w2 DoF Signif.

H1K2 ðY
1KY 2Þ 76.62 2 0.00

H1Q2 ðY
1QY 2Þ 2.10 2 0.35

H1=32 ðY
1 =3Y 2Þ 27.51 4 0.00
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coefficient in g is the constant, the correlation among the latent variables seems
positive (around 0:3) from all states, maybe somewhat lower from states with
Y 2

t ¼ 1 (married women).
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8. An illustrative example for survival data

To illustrate the model developed in Section 6, we investigate the causal
relationship between the adoption of two technologies introduced in the 70s in the
Italian metalworking industry.23 The dataset involves survival data, namely the spell
of non-adoption for two related technologies in a sample of Italian plants, and
therefore the analysis described in Section 6 will be performed. The two technologies
considered are Computer Aided Design or Manufacturing (CADCAM), which will
be labelled by 1, and Flexible Manufacturing Systems (FMS) which will be labelled
by 2. Both technologies are originated from the Flexible Automation (FA) paradigm
and therefore they are expected to display significative interactions.

Data on the diffusion of FA within the Italian metalworking industry are
provided by the FLAUTO database, developed at Politecnico di Milano. Our sample
includes 552 plants. CADCAM and FMS have been introduced in Italy around
1970, hence the observation window is assumed to begin in this year and calendar
time t is set to 0 in 1969. Since the dataset originates from a retrospective survey
carried on in 1989, the observed adoption time never exceeds T ¼ 20:

For each plant i ¼ 1; . . . ; 552; we observe the year of adoption of both
technologies, say t1i and t2i : To fit these survival type data into our framework, it
is convenient to transform them as follows:

y1
i;t ¼ 1fplant i adopts CADCAM at time tg t ¼ tE

i ; . . . ;min½t1i ;T �,

y1
i;t ¼ 1fplant i adopts FMS at time tg t ¼ tE

i ; . . . ;min½t2i ;T �,

where tE
i is the year plant i enters the sector. Notice that about 30% of the plants

enter after 1970. The data are right-censored because the firms are not observed after
1989, so that t1i and t2i never exceed T ¼ 20:However, this kind of censoring involves
no bias, since the censoring time may be regarded as a Markov time with respect to
the filtration generated by the process. The number of observations in each of the
three relevant states described in Fig. 2 is given in Table 5, which shows that we have
few observations in state ðy1; y2Þ ¼ ð0; 1Þ:

Let us now introduce the covariates, i.e., the vector xi;t in our notation. The only
time-invariant covariate considered is the size of the plant expressed in thousands of
employees at June 1989. In addition, conforming to Colombo and Mosconi (1995),
we consider two different time scales, by using both the calendar time t, and the
duration of non-adoption ti;t ¼ t�maxð0; tE

i Þ: For plants that entered the sector
before 1970, the two time scales coincide. We expect calendar time to reflect
phenomena which do not depend on the existence of the firm, notably price and/or
performance changes of the technologies over time, epidemic effects, and other time
varying factors. Instead, the duration of non-adoption captures effects related to the
23This section is inspired by the study carried on in Colombo and Mosconi (1995). We simplify the

economic analysis by introducing only a small subset of the covariates used there. Therefore, this should

be considered only as an illustration of the methods introduced in the previous sections rather than a

contribution to the economic debate. On the other hand, the econometric approach to non-causality

analysis is made more rigorous here.
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Table 5

Number of observations in each state

y1i;t ¼ 0 y1i;t ¼ 1

y2i;t ¼ 0 8795 880

y2i;t ¼ 1 178 ¼¼

Table 6

Estimates of the unsaturated model

Usable observations 9853 Degrees of freedom 9842

Function value �1475:488
Variable Coeff. Std error T-stat Signif.

CADCAM equation ðPfy1i;tjyi;t�1;xi;tgÞ

1 CONST �3.798 0.129 �29.51 0.00

2 Y2_1 0.469 0.125 3.76 0.00

3 SIZE 0.285 0.043 6.64 0.00

4 t 0.139 0.011 12.48 0.00

5 ti;t �0.003 0.009 �0.30 0.38

FMS equation ðPfy2i;tjyi;t�1;xi;tgÞ

1 CONST �3.562 0.192 �18.56 0.00

2 Y1_1 0.198 0.109 1.81 0.03

3 SIZE 0.252 0.057 4.41 0.00

4 t 0.082 0.018 4.61 0.00

5 ti;t �0.006 0.014 �0.41 0.34

Correlation

1 CORRELATION 0.246 0.081 3.05 0.00
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existence of the firm, such as learning phenomena. The collinearity-like problems
created by these variables are discussed in Colombo and Mosconi (1995).

As a whole, the covariates introduced in the model are xi;t ¼ ðsizei; t; ti;tÞ
T; for

expositional purposes, ri;t is assumed not to depend on xi;t and it is not z-
transformed. Model S1 has 17 parameters, while model U1; which is nested in S1; has
11 parameters. The w26 likelihood ratio test takes on value 2:563; and therefore model
U1 is selected and it will be used for non-causality analysis. Estimates of model U1

are reported in Table 6. These estimates might suffer some bias due to the omission
of several variables that have proved significant in previous studies: however, the
sign, magnitude and significance of the coefficients of size and t resemble other
studies, while duration of non-adoption is properly signed but insignificant.

Based on Table 6, Wald type non-causality tests may be done by simply analyzing
the t-test for the parameters b12; b21 and r: b11 is positive and significant (the
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hypothesis of Granger non-causality is rejected), which suggest a positive effect of
adoption of FMS on the following adoption of CADCAM: this has a simple
economic interpretation and confirms the presence of an interaction of the two
technologies. On the other hand, b21 is positive but non-significant, which means
that the Wald test accepts the hypothesis that CADCAM does not Granger cause
FMS ðY 1QY 2Þ: In fact, the economic intuition suggests that CADCAM is a
powerful design tool even without an FMS. The correlation between the error terms
of the latent regressions relative to CADCAM and FMS (r) is positive and highly
significant: the strong simultaneous dependence suggests that the decision of joint
simultaneous adoption occurs more often than what would be expected if the two
decisions were taken independently. The w23 distributed likelihood ratio test for the
joint exclusion of b11; b21 and r takes on value 26.043, strongly rejecting the
hypothesis. Similar results are obtained when testing is performed in model S1: It is
worth noticing that the results of non-causality tests depend on the information set:
however, the results of the non-causality analysis are substantially unchanged
even when the variables conditioned upon are all those included in Colombo and
Mosconi (1995).
9. Conclusions

In this paper we make a step towards rendering an important tool of applied
macroeconometric analysis, such as Granger non-causality, available and opera-
tional for those situations in which the processes involved in the analysis are binary,
as often happens in microeconometric analysis. The paper is grounded on a rigorous
mathematical definition of non-causality, which is shown to be easily fitted into a
dynamic version of the bivariate probit model. Particular attention is placed in
including covariates into the analysis, and in specializing the definitions for
longitudinal data sets. Panel type data for heterogeneous individuals are in fact
typical in microeconometric applications.

The paper implicitly suggests so many extensions to fill up a research agenda. To
make some examples: a more parsimonious representation of the dynamics; allowing
for unobserved heterogeneity; generalizing to a multivariate setting; considering
multinomial instead of binary variables; mixing binary and continuous variables;
analyzing the impact of time aggregation.
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