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Abstract

Studying how individuals compare two given quantitative stimuli, say d1 and d2, is a fundamental problem. One very common way to address
it is through ratio estimation, that is to ask individuals not to give values to d1 and d2, but rather to give their estimates of the ratio p = d1/d2.
Several psychophysical theories (the best known being Stevens’ power-law) claim that this ratio cannot be known directly and that there are
cognitive distortions on the apprehension of the different quantities. These theories result in the so-called separable representations [Luce, R. D.
(2002). A psychophysical theory of intensity proportions, joint presentations, and matches. Psychological Review, 109, 520–532; Narens, L.
(1996). A theory of ratio magnitude estimation. Journal of Mathematical Psychology, 40, 109–788], which include Stevens’ model as a special
case. In this paper we propose a general statistical framework that allows for testing in a rigorous way whether the separable representation theory
is grounded or not. We conclude in favor of it, but reject Stevens’ model. As a byproduct, we provide estimates of the psychophysical functions
of interest.
c© 2008 Published by Elsevier Inc.
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1. Introduction

A fundamental question in the behavioral sciences concerns
the ability of individuals to evaluate quantities. In this paper
we conduct a statistical analysis on data collected in two
experiments aimed at answering this question. We focus on
ratio evaluations in which individuals do not estimate absolute
quantities, but relative ones. In our experiments subjects
compare two stimuli, d1 and d2, and state in what proportion
p they are with respect to each other.

This resembles what in psychophysics Stevens (1946,
1951) called ratio magnitude estimation.1 More generally,
the evaluation of ratios by individuals occurs in millions of
everyday situations. These range from simple life experiences,
like a friend claiming to have caught a fish which was twice
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ccchoirat@unav.es (C. Choirat), rseri@eco.uninsubria.it (R. Seri).
1 See below for a more precise definition of the various experimental

concepts and procedures used in psychophysics.

as big as yours, to more complex decisions.2 To what extent
should we rely on the accuracy of the ratio assessments
expressed in the various situations?

It is well-known that, according to Stevens (1946),
subjective ratio estimations should be treated as any other
form of scientific measurement and acknowledged as exhibiting
the usual standard of scientific reliability. In particular,
while Stevens always recognized the possibility of cognitive

2 For example, in economics, the simplest decision problem in condition of
risk and uncertainty can be viewed as a situation in which an individual has to
decide the price x he is willing to pay to participate in a gamble giving prize
y with probability p and 0 otherwise. In many economic models, including the
classical expected utility (von Neumann & Morgenstern, 1944), x solves a ratio
expression given by:

u(x)

u(y)
= W (p)

where u(·) is a utility index and W (·) is a probability weighting function (which
is linear in expected utility, but possibly taking various forms of non-linearity
under several non-expected utility models; see e.g. Prelec, 1998 and Tversky &
Fox, 1995). As will become apparent below, the psychophysical forms studied
in this paper have strong similarities with the above separable utility model (on
this theme, see in particular Luce, 2002, 2005).

0022-2496/$ - see front matter c© 2008 Published by Elsevier Inc.
doi:10.1016/j.jmp.2008.01.002



Author's personal copy

M. Bernasconi et al. / Journal of Mathematical Psychology 52 (2008) 184–201 185

distortions in the individual apprehension of quantitative
stimuli, his extensive application of subjective estimation
experiments in several psychological domains led him to
elaborate his famous psychophysical law, establishing that
subjective value is a power function of physical value and
that equal physical ratios produce equal psychological ratios
(Stevens, 1957).

Stevens’ approach has been criticized under various per-
spectives.3 For mathematical psychologists one of its major
drawbacks has always been seen in the lack of rigor and of
proper mathematical and philosophical foundations justifying
the proposition that, when assessing a ratio judgment, a “subject
is, in a scientific sense, ‘computing ratios’ ” (Narens, 1996, p.
109).

In recent years, however, there has been an important
stream of research clarifying the conditions and giving
various sets of axioms that can justify ratio estimations.
An achievement of this literature has in particular been the
axiomatization of various theories belonging to a class of
so-called separable representations (see Narens, 1996, for
a seminal paper; Luce, 2001a, 2002 and Narens, 2002 as
more recent contributions).4 Formally, we say that a separable
representation holds in a ratio estimation if there exist a
psychophysical function ψ and a subjective weighting function
W such that the ratio p is in the following relation with d1
and d2:

ψ(d1)

ψ(d2)
= W (p). (1)

Eq. (1) corresponds to Narens’ (1996) original model and
incorporates the notion that various and independent distortions
may occur both in the assessment of subjective intensities and in
the determination of subjective ratios (see also Luce, 2002). In
this perspective, Stevens’ model corresponds to a very special
case in which either ψ or W is a power function, with the other
being the identity (see Section 2). Other models with specific
restrictions or expressions for either the function ψ or W have
been proposed in the literature.

The objective of this paper is to conduct a statistical
analysis of separable representations, to test whether the
representation holds in simple ratio estimation experiments
and whether Stevens’ power-law model is appropriate or
other functional representations provide better descriptions of
subjects’ assessments.

Various recent papers have dealt with tests of specific
properties underlying separable representations (including
Ellermeier & Faulhammer, 2000, Zimmer, 2005 and Zimmer,
Luce, & Ellermeier, 2001 and the series of Steingrimsson &
Luce, 2005a,b, 2006, 2007) or tests of particular functional

3 See Michell, 1999 in particular Chapter 7), for a critical review of Stevens
in a historical perspective.

4 There are, however, some important differences in the axiomatic approach
of Narens, on the one side, and that of Luce, on the other side; and although
this paper doesn’t directly deal with psychological primitive concepts and
axioms, in the course of the paper we will give some references about the main
differences between the two approaches.

forms (Hollands & Dyre, 2000). In the course of the paper
we give some accounts of the properties tested in the above
experiments and of the results. However, it seems to us that the
present paper is the first that conducts a formal and direct test
of formula (1).

Our approach will in particular focus on functional (gener-
ally, non-parametric) restrictions of separable representations,
rather than on underlying behavioral hypotheses. An advan-
tage of our approach is that it allows for comparisons of mod-
els and for establishing which models best represent the data,
in terms of both goodness-of-fit and simplicity or parsimony
of representations: it is the approach of model selection that
has been recently advocated also in experimental psychology
by several authors, including Pitt, Myung, and Zhang (2002),
and the various authors who have contributed to two recent is-
sues which the Journal of Mathematical Psychology dedicated
to the topic (among others, see Cutting, 2000 and Zucchini,
2000, in addition to the editors’ introduction by Myung, Fos-
ter, & Browne, 2000 and Wagenmakers & Waldorp, 2006, for
general overviews). The approach also permits us to introduce
quite simply a stochastic element in the analysis, which is on
the one side consistent with the obvious notion that no model
of subjective measurement can be thought to hold determinis-
tically (this point has also been acknowledged several times in
the literature; see e.g. Luce, 1997 and Stevens, 1946), and on
the other side provides an appropriate setting for developing a
systematic and robust statistical analysis. A limitation of the ap-
proach is that the stochastic term has no explicit relationships
with the behavioral properties underlying the separable repre-
sentations, so that it cannot be directly interpreted in terms of
mathematical psychology.

The paper is organized as follows. We start in the next
section (Section 2) by giving a detailed classification of
separable representations available in the literature; then we
describe (in Section 3) the experiments we have conducted
to test the different models. Section 4 develops the statistical
framework, introducing the stochastic term and showing
how the separable representation can be estimated non-
parametrically (using polynomial regression) and how it can be
tested. The results of the experiments are analyzed in Section 5.
The last section (Section 6) brings the various themes of
the paper together and concludes. Some technical material is
consigned to the Appendix.

2. Theoretical models

Technically, in the theoretical psychophysical literature, the
notion of ratio estimation does not enter directly in the axioms,
which are instead based on the primitive concept of ratio
production (see e.g. Steingrimsson & Luce, 2006, p. 16). In
a ratio production, two stimuli d1 and d0, with d1 > d0, are
given with a positive p, and then the respondent is asked to
select the stimulus d2 such that the “subjective” interval from
d0 to d2 stands in the proportion p to the “subjective” interval
from d0 to d1. Steingrimsson and Luce (2006) show that a
natural interpretation of ratio estimation can be given within the
framework of separable representations when d0 = 0. They also
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Table 1
Models of ratio estimation

Acronym Name Formulation Log–log formulation Regression model

UNR Unrestricted p = F (d1, d2) π = f (δ1, δ2) π = f (δ1, δ2) + ε

SEP Separable W (p) = ψ(d1)
ψ(d2)

w (π) = Ψ (δ1) − Ψ (δ2) π = w−1 [
Ψ (δ1) − Ψ (δ2)

]
+ ε

LUC Luce when p ≥ 1 ω · exp
[
ρ′(ln p)η

′] = ψ(d1)
ψ(d2)

ln ω + ρ′ · πη′ = Ψ (δ1) − Ψ (δ2) π =
[
Ψ(δ1)−Ψ(δ2)−ln ω

ρ′
] 1

η′ +ε

RAT Ratio p = ψ(d1)
ψ(d2)

π = Ψ (δ1) − Ψ (δ2) π = Ψ (δ1) − Ψ (δ2) + ε

STG Stevens’ generalized W (p) =
(

d1
d2

)κ
w (π) = κ · (δ1 − δ2) π = w−1 [

κ · (δ1 − δ2)
]
+ ε

STE Stevens’ p =
(

d1
d2

)κ
π = κ · (δ1 − δ2) π = κ · (δ1 − δ2) + ε

NAI Naive p = d1
d2

π = δ1 − δ2 π = δ1 − δ2 + ε

Fig. 1. Respective positions of the theoretical models.

draw attention on the relationship between the concept of ratio
estimation and that of magnitude estimation most often used by
the empirical psychophysical literature and stemming from the
works of Stevens, in particular from his posthumous treatise
(Stevens, 1975). One example of magnitude estimation is an
experiment in which the respondent is provided with a standard
stimulus d0 and with a number ψ0 called the modulus (typically
greater than 1); and then to each stimulus d2, the respondent
is asked for its numerical values so that ratios are preserved,
meaning that ψ(d2)

ψ0
= d2

d0
. As it is well known, Stevens thought

that with this method one could recover the function ψ directly,
but this is precisely to what most of his critics have objected
and what modern mathematical psychology has tried to clarify.
In the following, we present various models that have been
developed in the literature to link the proposed stimuli d1 and
d2 with the subjects’ stated proportion p in a ratio estimation
experiment. Each model is identified with a three letter acronym
which will be used throughout the paper. The models’ names,
acronyms and deterministic formulations are also shown in
the first three columns of Table 1. (The meaning of the last
two columns of the Table are explained in Section 4.) Their
respective relations are shown in Fig. 1.

Starting with the general separable representation of Eq.
(1), we indicate it with SEP. As noted, several formulations
of this kind have been proposed in the literature. In our
opinion, the most lucid derivations of separable representations
are due to Narens (in particular, Narens, 1996, 2002)

and Luce (especially Luce, 2002, 2004). There are some
important differences between the two approaches. Among the
most important we observe that whereas Luce is closer in
spirit to the psychophysical tradition, developing empirically
testable assumptions for three psychophysical primitives (joint
presentations of pairs of stimuli, a respondent’s ordering of such
pairs, and judgments about two pairs of stimuli being related as
some proportion), Narens’ aim is to provide conditions for ratio
subjective estimations to be consistent with the representational
theory of measurement, in the sense of carefully axiomatizing
what Stevens might have meant, assuming that his method
of magnitude estimation yielded the psychophysical functions
directly.5 Despite the differences,6 an important similarity
between the representations obtained by the two authors is
that both endorse the idea that two independent distortions
affect a ratio estimation: one of stimuli intensities, embodied
in the psychophysical function ψ ; and the other of numbers,
entailed in the weighting function W . Were a subject able
to give exactly unbiased estimates, both ψ and W would be
everywhere linear, and formula (1) would reduce to d1/d2 = p.
Given, however, the unlikelihood of this possibility according
to psychophysicists, we refer to this extreme case as a naive
model (NAI).

In an ordinary SEP model, the equality W (1) = 1 is
generally supposed to hold, that is the individuals are able to
correctly estimate ratios of equal stimuli (even this, however, is
an assumption requiring some testing); moreover, ψ is defined
up to a multiplicative constant so that we can suppose that
ψ (1) = 1. At last, it is easily seen that both ψ and W are
defined up to a power transformation (i.e., if ψ and W are
functions for which a separable representation holds, then so
are also ψr and W r for any real r &= 0). This is what is called in
statistics an identification problem and will lead us to impose a
restriction in our empirical investigation.

The original Stevens’ model (STE) holds when W can be
represented as the identity function and ψ is a power function.

5 On the notion of “direct” measurement see also Narens (2006); while see
below for the specific property which Narens (1996) showed Stevens’ method
required.

6 Another relevant qualification regarding Luce’s axiomatization is that,
since it is based on joint presentation of stimuli, generally thought to refer to
sensorial intensities (like auditory or visual), the separable representation in Eq.
(1) is derived as a special case of a more general model which applies when one
of the stimuli is 0 (namely, at the threshold intensity).
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This case can be recovered as ψ(d) = dκ and W (p) = p;
or, alternatively, as ψ(d) = d and W (p) = p

1
κ . This second

formulation will in fact be used for our empirical investigation
because of its computational advantages (see the remarks after
Eq. (5) in Section 4.2).

When uncovering what he calls Stevens’s Assumptions,
Narens (1996) states that the fact that W could be chosen such
that W (p) = p seems to be “anything more than a coincidence”
(p. 110). In particular, he shows that for W to be represented
linearly, it is necessary that subjective ratio judgments satisfy
a given multiplicative property: namely, that if d2 stands in
proportion p to d1 and d3 stands in proportion q to d2, then
d3 stands in proportion pq to d1.7, 8 A test of this property
has been carried forward by Ellermeier and Faulhammer (2000)
and Zimmer (2005) with negative results. Therefore, we will
also consider a model that we call Stevens’ generalized model
(STG), in which ψ is a power function and W is left free to
vary.

Another model that may be of some interest is obtained
when W is the identity and ψ is left free to vary: namely, p =
ψ (d1) /ψ (d2). In this case the above multiplicative property
holds (see Augustin, 2006) and the evaluation of a ratio of two
quantities d1 and d2 is simply equivalent to the ratio of the
separate evaluations of the quantities, so that evaluating relative
quantities does not appear to be a different problem from
evaluating absolute ones (see e.g. the discussion in Hollands
& Dyre, 2000). We call this a ratio model (RAT).

Starting from representation (1), Luce (2001a, 2002) has
developed a functional form for W similar to a specification
which Prelec (1998) proposed in the context of utility theory for
risky gambles. The original specification assumed W (1) = 1.
The more recent specification we analyze here is:

W (p) = ω ·
{

exp
[
−ρ(− ln p)η

]
p ∈ ]0, 1]

exp
[
ρ′(ln p)η

′]
p ∈ ]1, ∞[

(2)

with ρ, ρ′, η and η′ all greater than zero; and where ω may be
different from one.

The attractiveness of the specification is that, depending on
the combinations of the parameters, various shapes for W are
possible: concave, convex, S-shaped or inverse S-shaped. In the
context of preferences among gambles, an inverse S-shaped W
under the assumption ω = 1 (hence W (1) = 1) seems to hold
(see Luce, 2000 and Prelec, 1998). In recent psychophysical
experiments on loudness production, Steingrimsson and Luce
(2007) and Zimmer (2005) have instead rejected the behavioral

7 A subtlety pointed out by Luce (e.g. Luce, 2005, p. 246) is that the property
forces W to be a power function with W (1) = 1; when however the property
fails, W may still be a power function with W (1) &= 1.

8 Also note that a similar multiplicative consistency is required by various
models of multiple decision analysis used in management (like the Analytic
Hierarchy Process, Saaty, 1980), which deal with a situation in which an
overall objective is evaluated against several alternatives by separating the main
objective in levels of sub-objectives and attributes. A ratio evaluation is then
used to give a weight to each attribute about the many times it is preferred
under one alternative than under another alternative. A final decision is then
obtained multiplying and comparing weights through sub-objectives.

hypothesis underlying the specification with W (1) = 1; though
the latter accepted one with W (1) &= 1.9 In the following, we
will refer to a separable representation with W as in Eq. (2) as
LUC. Since in our experiments we will restrict the analysis to
ratio estimations where p ≥ 1, we focus the attention on the
second of the two expressions (see Table 1).

Other examples of functional forms for ψ and W are
discussed by Luce, 2002, pp. 526–528) and further by
Steingrimsson and Luce (2007). In any case we remark that
our aim is not only to assess the form of ψ and W , but also to
test whether the general SEP model holds true. Therefore, for
the empirical analysis we also consider a general nonparametric
alternative to the separable representation, which is simply a
model given by p = F(d1, d2) (UNR).

Before moving to explain how the various models will be
tested, we now present the experimental design.

3. The experiments

Most experiments which have recently tested behavioral
properties underlying separable representations have followed
the psychophysical tradition of using sensorial stimuli, typically
auditory or visual (see e.g. Ellermeier & Faulhammer, 2000,
Steingrimsson & Luce, 2005a,b, 2006, 2007 and Zimmer,
2005). This is in line with the purpose of studying most
directly the validity of Stevens’ ratio scaling method when used
to obtain subjective measurements of sensation magnitudes.
Our perspective is here slightly different, as we are interested
in studying the kind of judgmental process used by people
when asked to ‘compute’ subjective ratio judgments. We
conducted two experiments with two different stimuli. In the
first experiment participants were given a map of Italy and
they were asked in a sequence of 90 questions to indicate how
many times a certain Italian city (City A) appearing on the map
was according to them more distant from Milan than another
Italian city (City B). In each question City A was actually more
distant from Milan than City B. Subjects were informed of
this. Each question was presented to subjects on a new page
of a computer screen and subjects answered the question by
filling an apposite window in each page. When a question was
answered by a participant, the software moved this participant
to the next question and the previous questions and answers
were no longer accessible to the participant. Subjects had an
incentive to perform well in the experiment: they received
30 cents of Euro for each question in which the error of their
estimate was lower in absolute value than 10% of the correct
answer. This procedure was explained to the subjects at the
beginning of the experiment. Subjects were also told that the
correct ratios were computed at the first decimal place, so

9 The basic property underlying the specification with ω = 1 is called
reduction invariance (Luce, 2001a). It says the following: suppose that d3
stands in proportion t to d1 and stands in proportion q to d2 when d2 stands
in proportion p to d1, then for reduction invariance to hold d5 should stand in
proportion t N to d1 (for a constant N ) and in proportion q N to d4 when d4
stands in proportion pN to d1. Aczél and Luce (2007) show the equivalence
between the more general specification (2) (where ω &= 1) and a property of
double compound invariance, called double reduction invariance.
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Table 2
Summaries of the experiments

Distance experiment Area experiment

Number of questions 90 90
Number of participants 20 20
Range of stimuli cm 0.4–29.2 cm2 0.41–7.22
Ratio range 1.1–13 1.1–13
Ratio average 6.4 6.4
Participants’ mean squared errors

- Average across participants 318.4 133.9
- Mean of standard deviations 7.07 2.77

Average payment (Euros) 11.1 13.3
Average completion time 93′35′′ 84′30′′

they were also encouraged to perform similar rounding in their
subjective assessments.

The design of the second experiment was similar. The only
difference was in the type of stimuli. In the second experiment
subjects faced 90 questions in each of which they were asked
to state how many times the area of a section of a disk (Area
A) which subjects were viewing on a computer screen was
bigger than another section (Area B) of the same disk. Subjects
were informed that in all questions Area A was bigger than
Area B. The incentive and the procedure for this experiment
were the same as in the previous experiment. In the remaining
of the paper we will refer to the first experiment as to the
‘distance experiment’ and to the second experiment as to the
‘area experiment’.

Other characteristics summarizing the two experiments
are reported in Table 2. 20 subjects participated in each
experiment with no subjects participating in both. In the
distance experiment stimuli in centimeters on the map of
Italy ranged from cm 0.41 for the City B closest to Milan
to cm 29.2 for the City A most distant from Milan; in the
area experiment the largest Area A on the computer screen
measured cm2 7.2 and the smallest Area B was cm2 0.41.
Given the different stimuli, the ratios asked in the questions
of the two experiments were chosen to range over the same
interval (1.1–13) and with the same mean (6.4). Subjects seem,
however, to have found different difficulties in answering the
questions of the two experiments, as they have given much more
precise assessments in the area experiment than in the distance
experiment: in fact, the participants’ average of mean squared
errors in the distance experiment is more than twice the average
in the area experiment (318.4 over 133.9). This is an interesting
feature resulting from the design, confirming a difference in
the two experimental treatments, which we consider further
when we will discuss the results of estimation of separable
representations for the two experiments.

The average payments per subjects were 11.1 Euros in the
distance experiment and 13.3 in the area experiment, with an
average completion time of about 1 hour and a half in both
experiments.

The experiments were run in individual sessions at the
laboratory of experimental economics at the University of
Insubria, Varese (Italy), between February and March 2007.

4. A statistical framework to test separable representations

In the following we discuss a framework for conducting
a statistical analysis of separable representations, which we
then apply to the data from our experiments. We proceed in
various steps. First, in Section 4.1, we show how to obtain
a regression form for the various theoretical representations
discussed above. Then, in Section 4.2, we focus on the inference
procedure and on various parametric and non-parametric
restrictions which characterize the models in their estimable
forms. Lastly, in Section 4.3, we specify the strategy chosen
to select the best models following the approach of statistical
model selection.

We emphasize that the analyses will be conducted for
each individual separately. This is standard in psychophysics
experiments and particularly important in the present context
in which several nonlinearities may affect the functional forms
to be estimated. Indeed, it is well known that, except for the
linear model, individual differences in the coefficients of a
functional form may compromise the use of a group level
analysis. For example, in the area of stochastic modeling, it has
been proved via hazard analysis that all mixtures of individuals,
who are all modeled by an exponential density function but
with some variability in their coefficients, cannot be modeled at
the group level by an exponential density function. This occurs
because the exponential distribution has constant hazard, but all
mixtures of exponentials have monotonically decreasing hazard
(see Chechile, 2003). But the problem is quite general and
is not particular to the exponential distribution. This provides
a further rationale for the analysis being conducted on an
individual basis in the present context.

4.1. Regression models

As a first step to transform the theoretical representations
of Section 2 into models amenable to statistical estimation, we
apply a log–log transformation to obtain a better formulation
(see Luce, 2002, p. 526). For the basic SEP model, for example
we write:

ln W
[
exp(ln p)

]
= ln ψ

[
exp(ln d1)

]
− ln ψ

[
exp(ln d2)

]
.

We define:

π = ln p
δi = ln di

ln W
[
exp(·)

]
= w(·)

ln ψ
[
exp(·)

]
= Ψ(·)

with the constraint ψ (1) = 1 becoming Ψ (0) = 0. In this new
parameterization, we can write the representation as:

w (π) = Ψ(δ1) − Ψ(δ2).

The log–log transformation applied to the other models yields
the results shown in the fourth column of Table 1. As an
example, model UNR gives the relation π = f (δ1, δ2), in
which f is left free to vary.
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To obtain a regression expression for the various models and
subjects of the experiments, we then add an individual error
term to the log–log transformations. This is done in the last
column of Table 1. As an example, model SEP for a given
individual is written in the following regression form:

π = w−1 [Ψ(δ1) − Ψ(δ2)] + ε. (3)

There are various reasons which justify the introduction
of a stochastic term in the individual representations. Indeed,
several mathematical psychologists have also emphasized that
axiomatic theories “are about idealized situations and do not
involve considerations of error” (Narens, 1996, p. 109; on the
same point Luce, 1997, p. 81, and 2001b, p. 28; and even
Stevens, 1946, p. 680). On the other hand, possibly due to
trembling and rounding, people commit errors and this explains
why it is sensible to suppose that the theoretical relations hold
only approximately. Though this may seem a trivial point,
we however remark that the experimental literature does not
usually spend much time discussing and studying the nature of
the noise and of the randomness in experimental data.10

Notice also that the introduction of the stochastic terms
leaves unaffected the non-parametric restrictions which char-
acterize the various theoretical models and their relationships.
We now show how such restrictions result in models which can
be estimated and tested.

4.2. Estimable models and restrictions

The regression models obtained in the previous subsection
are nonparametric. We now explain how they can be
transformed into estimable forms.

We start describing the structure of the data provided by
the experiments. We use the following notations: let J be the
number of comparisons for any subject in the experiments. For
any subject, we observe a vector of log-ratios π = (π1, . . . ,πJ )
where J = 90. For any stated log-ratio π j , we know also the
values of the stimuli, say d j,1 and d j,2 and of their logarithmic
transformations, namely δ j,1 and δ j,2; (note that the stimuli do
not depend on the individual). For each individual, we suppose
the existence of a relation of the form π j = f

(
δ j,1, δ j,2

)
+ ε j ,

with vector of residuals ε = (ε1, . . . , εJ ). The case of interest
is the one in which the function f takes the form (3), but as
explained above we will consider also a more general model
in which f is left unrestricted: this will allow us to test the
restrictions through statistical techniques.

The general method we use is to approximate the functions
w−1, Ψ and f through polynomials in their arguments. This is
generally possible: according to the Weierstrass Approximation
Theorem, any continuous function on a compact domain
can be approximated to any desired degree of accuracy
by a polynomial in its arguments. This use of polynomial

10 Here we do not refer necessarily only to experimental psychology; but also
in other fields of the behavioral sciences using experimental methods, there is
an increasing dissatisfaction with the way the analyses usually deal with the
stochastic assumptions (see for example Hey, 2005, for an emphasis of this
problem in experimental economics).

approximation is similar to the derivation of flexible functional
forms in the theory of production (see Fuss & McFadden,
1978, p. 236). In this case, ε incorporates the error arising in
this approximation. The polynomial approximation applied to
the various regression models yields the following individual
estimable forms. We start from the unrestricted model.

UNR. In this case, we approximate the function f in Table 1
with a polynomial in the two variables δ j,1 and δ j,2. Therefore,
using the notation introduced above, we estimate the following
polynomial regression:

π j = β ′ · x j + ε j (4)

where x j ! (1, δ j,1, δ j,2, δ
2
j,1, δ j,1 · δ j,2, δ

2
j,2, . . . , δ

M
j,1, δ

M−1
j,1 ·

δ j,2, . . . , δ j,1 · δM−1
j,2 , δM

j,2)
′ is a

(
(M+1)(M+2)

2 × 1
)

vector; M
is the order of the polynomial regression. The selection of
the order of the polynomial regression will be performed as
described in Section 4.3.

SEP. The same procedure is applied also to the SEP model
in order to approximate the functions w(·) and Ψ(·). We
represent w−1 through the polynomial expression:

w−1 (x) * w−1
L (x) =

L∑

)=0
φ) · x)

where w (0) = 0 implies that φ0 = 0. The same development
can be used for Ψ :

Ψ (y) * ΨN (y) =
N∑

n=0
γn · yn, (5)

with the understanding that γ0 should be null (since Ψ (0) = 0).
Moreover, we will also need the normalization γ1 = 1 (see the
discussion on Stevens’ model above). As a result, we get:

π j = w−1 [
Ψ

(
δ j,1

)
− Ψ

(
δ j,2

)]
+ ε j

* w−1
L

[
ΨN

(
δ j,1

)
− ΨN

(
δ j,2

)]
+ ε j

=
L∑

)=0
φ) ·

(
N∑

n=0
γn · δn

j,1 −
N∑

n=0
γn · δn

j,2

))

+ ε j . (6)

The parameters are contained in the vectors γ and φ. This
means that any model of the SEP class is identified by a couple
of letters (N , L), corresponding respectively to the orders of the
polynomials approximating the (log–log formulations of the)
psychophysical function ψ and weighting function W .

LUC. The LUC model lets ψ free to vary and constrains W
to take the form given in Table 1:

π j =





N∑
n=0

γn · δn
j,1 −

N∑
n=0

γn · δn
j,2 − ln ω

ρ′





1
η′

+ ε j . (7)

STG. Model STG arises when W is left free to vary, so that
STG with φ of length L is a subclass of SEP with N = 1.

RAT. Model RAT arises when ψ is left free to vary, while
W , because of an identification problem, is equal to a power
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Fig. 2. Respective positions of the econometric models.

function. This means that RAT with γ of length N is a subclass
of SEP with11 L = 1.

STE. Model STE arises when N = L = 1. In this case,
some algebra shows that ψ(d) = d and W (p) = p

1
φ1 . It is

more customary to see Stevens’ model in an alternative form
with ψ a power function and W the identity. This alternative
form of Stevens’ model can be obtained as ψ(d) = dφ1 and
W (p) = p.

NAI. Model NAI is a special case of the previous ones when
N = L = 1 and φ1 = 1 (since γ1 is already set to 1 for
identification).

Fig. 2 shows the respective positions of the econometric
models as resulting after the polynomial approximations from
the theoretical relations (compare with Fig. 1). Model UNR
nests the SEP form, at least as long as its order M is equal
or greater than the product N · L of the orders of the two
polynomials of the SEP model. When N = 1, SEP (N , L)
reduces to RAT (N ), and when L = 1, SEP (N , L) reduces to
STG (L). Their intersection is Stevens’ original model (STE),
containing also the NAI extreme case. The relationships with
model LUC are slightly more complex. Indeed, if both η′ = 1
and ω = 1, then LUC (N ) reduces to RAT (N ) (compare (7)
with (8) in footnote 11), but otherwise LUC (N ) is not included
in any model SEP (N , L) for any value of L . However, when L
increases, the function wL of SEP is able to describe more and
more accurately the w appearing in the Luce model (7). Thus,
despite the fact that LUC is a special case of SEP (see Section 2
and Fig. 1), LUC (N ) is not a special case of SEP (N , L).

4.3. Specification strategy

We propose to analyze the data through the following steps:

11 In this case, the model is given by:

π j = φ1 ·
(

N∑

n=0
γn · δn

j,1 −
N∑

n=0
γn · δn

j,2

)

+ ε j (8)

where γ0 = 0 and γ1 = 1. The presence of φ1 allows for leaving the function
ψ unrestricted (apart from the constraints ψ (1) = 1 and, here, also φ0 = 0).

• estimating the polynomial regression models for any
individual;

• selecting (through tests and information criteria) the best
model for any individual.

• performing graphical analyses on the estimated functions.

In the previous Sections, we specified the mean structure
of the data. Estimation when only the first one or two
moments are known is called pseudo- or quasi-maximum
likelihood estimation (PMLE or QMLE), and was investigated
in Gouriéroux, Monfort, and Trognon (1984a). As is customary
in the application of PMLE, we perform estimation as if the
errors ε = (ε1, . . . , εJ ) follow i.i.d. normal distributions with
E

(
ε j

)
= 0 and V

(
ε j

)
= σ 2. The estimators obtained in this

way enjoy good statistical properties (consistency, asymptotic
normality) even if the errors are not homoskedastic or not
normal.12 This estimation method is much more robust than
maximum likelihood estimation, since it does not need the
complete specification of the density, but only of the first one or
two moments; because in our case we have no positive theory
concerning the error terms, this characteristic of PMLE turns
out to be crucial here. The estimates are therefore obtained
through the maximization of the objective function given by:

) = − J
2

· ln
(

2πσ 2
)

− 1
2σ 2 · (π − π̂)′ · (π − π̂),

where π̂ is a vector whose elements take one of the forms
described in Section 4.2. As an example, for a SEP (N , L)

model, the generic element of π̂ is

π̂ j =
L∑

)=0
φ) ·

(
N∑

n=0
γn · δn

j,1 −
N∑

n=0
γn · δn

j,2

))

for a choice of N and L . The algorithms used to optimize the
objective function are described in the Appendix.

Once estimation of the models for several values of the
polynomial orders ((N , L) for the separable models, M for
the unrestricted ones) has been performed (see Section 5
for the practical method), we have to choose the values of
these parameters that give the best models. Two possible
interpretations of the procedure we have used can be given. We
present a brief account of both of them since they represent
two different but interesting approaches to the analyses of
psychological data.

In the first approach, the models are considered as
parametric and selection of the optimal model is performed
using a method that is called BIC (Bayesian Information
Criterion) or SC (Schwarz Criterion) (Schwarz, 1978), that
weights the likelihood of the model and the number of
parameters.13 If the loglikelihood (not normalized by the

12 As an example, in Gouriéroux, Monfort, and Trognon (1984b) this
estimation method was applied to discrete Poisson data.
13 See Pitt et al. (2002), and Wasserman (2000) for general expositions of the

BIC as a method for selection between alternative models in psychology; see
also Karabatsos (2006). Also note that we decided to use BIC and not AIC
(Akaike, 1974) since the latter is not consistent in a statistical sense and we are
interested in obtaining good estimates of the parameters representing the order
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number of observations) is ), the number of parameters is k and
the number of observations is n, we have BIC = )−0.5·k·ln(n)

n .
We choose the model that has the highest value of BIC. This
is the method customarily used in ‘autoregressive moving
average’ (ARMA) models estimation and selection.

In the second approach, the choice of a model using a
penalized likelihood function such as BIC can be interpreted
as a semiparametric estimation method based on statistical
learning theory (see Rissanen, 1978 and Vapnik, 1995, in
particular Chapter 4). In this sense, the function to be
maximized is:

)- = − ln
(
2πσ 2)

2
−

(
πh − π̂

)′ ·
(
πh − π̂

)

2Jσ 2 − k · ln(J )

2J
,

over all possible values of the order and parameters of
the polynomials. This is formally equivalent to the previous
procedure, but philosophically different (since the models
considered are virtually infinite in number). A discussion on
the optimality of this technique is also in Grünwald (2000).

5. Results of the experiments

In the following, we use the above statistical framework and
specification strategy to analyze the results of the experiments
described in Section 3. The results are presented in two steps.
First, we give an account of the best models estimated for each
subject in each experiment, namely that on distances and that
on areas; then we provide evidence of the actual quality of the
best models, supplementing the statistical analyses with some
graphical representations of the results.

5.1. Best models

As explained above, in order to select the best models in both
experiments for each individual, we use information criteria to
firstly choose a model (namely, the order of the polynomial) out
of every class, and then compare the best models across classes.

In order to select the best model of every class, we have
estimated the models UNR with M ≤ 6, the models SEP with
N ≤ 4 and L ≤ 4 and LUC with N ≤ 6. When the previously
described procedure selected a model with M , N or L given
by one of these bounds, we have extended the estimation to
the nearby models in order to be sure that the selected model
was better than the models with similar values of polynomial
orders.14

The results are summarized in Table 3 for subjects
participating in the distance experiment, and in Table 4 for
subjects participating in the area experiment. In both tables,
BIC represents the Bayesian Information Criterion, ) the

of the polynomials. We recall that AIC is given by the formula AIC = )−k·n
n .

The use of BIC is also preferred over likelihood ratio tests, since it allows to
compare nonnested models as some of those considered in the present analysis
(as portrayed by Fig. 2).
14 This procedure is similar to the one considered in Chambaz (2006). In

fact, the method proposed by this author works when selecting a single order
parameter (such as M for the UNR class of model), but can reasonably be
modified to account for more parameters.

loglikelihood, k the number of parameters of the model and
R2 the usual coefficient of determination of a regression
model. Selection is performed according to BIC, but also the
other quantities convey important information; e.g., R2 gives
information about the goodness-of-fit of a model to data.

For the distance data, it turns out that for one subject the best
model is a NAI one, for one a UNR model, and for 18 subjects
a SEP model: in 12 cases out of 18 a RAT one. No individual
model is either a STE or a LUC one. The relevance of separable
models in this example is very strong since they turn out to be
the best models for the overwhelming majority of cases (19 out
of 20 cases, including also the NAI model).

For the area data, the evidence is more balanced across the
different classes of models. In 5 cases the best model is a NAI
one, in 2 cases a UNR one, in 5 cases a STE one, in 1 case
a LUC one, in 7 cases a SEP one. Of these latter, 3 are RAT
models and 1 is a STG model. Thus, even in this experiment,
the whole class of separable models (including also NAI, STE
and LUC) accounts for 18 individuals out of 20. Therefore, also
in this experiment separable models appear quite supported by
the evidence.

It is also interesting to notice that in both experiments
there is some evidence in favor of models consistent with
the multiplicative property (see Narens, 1996 and Section 2)
underlying some separable forms (see also Fig. 1): namely,
in both experiments 13 individuals out of 20 have models
consistent with such property (12 RAT models and 1 NAI
model in the distance experiment; and 5 STE, 3 RAT and
5 NAI models in the area experiment). This proportion is
coherent with a recent result obtained by Augustin and Perner
(2007), who found in experiments testing the multiplicative
property directly (rather than fitting models) that about 2/3
of their subjects were consistent with the property. It is worth
observing that Augustin and Perner (2007) used stimuli very
similar to those employed in our experiments: namely, as in
our experiments their subjects were asked to compare lengths
of lines and areas of circles. On the other hand, as already
noted, both Ellermeier and Faulhammer (2000) and Zimmer
(2005) reported substantial evidence against the multiplicative
property in experiments employing auditory stimuli. This could
indicate that the property may hold in some contexts, but not in
others.

The comparison between the results of the area experiment
and those of the distance experiment provide some further ob-
servations. In particular, the evidence shows that the best mod-
els and the functions W and ψ selected appear to be simpler
for the area data than for the distance data (for the area experi-
ment, in 10 cases out of 20 W and ψ are both power functions,
while this happens in only 1 case out of 20 for the distance ex-
periment).15 This confirms the impression from the comparison

15 We should note that we also controlled for the effects of a constant, that
is W (1) &= 1, in the SEP models estimated in both experiments. For the
majority of subjects the constant has been rejected (17 subjects in the distance
experiment and 12 in the area experiment). Moreover, for the few cases in which
the constant was required by the SEP models, this did not change the best
models selected for those individuals.
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Table 3
Best models for the distance experiment

NAI UNR STE STG RAT SEP LUC

Subj. 1 BIC 0.3558392 0.5755687 0.3980556 0.3994690 0.652608 0.652608 0.602891
) 34.27543 67.55052 40.32482 42.70193 67.73434 67.73434 67.75962
k 1 7 (M = 2) 2 3 (L = 2) 4 (N = 3) 4 (N = 3, L = 1) 6 (N = 3)

R2 0.9243417 0.9638824 0.9338585 0.9372617 0.9640296 0.9640296 0.9640498
Subj. 2 BIC 0.159343 0.2307394 0.1553487 0.1553487 0.159431 0.159431 0.2122953

) 16.59077 36.51588 18.48119 18.48119 21.09850 21.09850 30.3561
k 1 7 (M = 2) 2 2 (L = 1) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.8853541 0.9263689 0.8900705 0.8900705 0.896282 0.896282 0.9155675
Subj. 3 BIC −0.2775456 0.1099048 −0.07055351 0.02512447 0.1321595 0.1536641 0.1368845

) −22.72920 25.64077 −1.850006 9.010917 18.64407 22.82939 23.56913
k 1 7 (M = 2) 2 3 (L = 2) 3 (N = 2) 4 (N = 2, L = 2) 5 (N = 2)

R2 0.6654476 0.8858053 0.7896419 0.8347503 0.8665953 0.8784433 0.8804252
Subj. 4 BIC −0.1339165 0.2141209 0.08863792 0.1569985 0.1882736 0.2266557 0.2081290

) −9.802578 28.27050 12.47722 20.87958 23.69434 31.64854 29.98114
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 5 (N = 2, L = 3) 5 (N = 2)

R2 0.7275271 0.8830823 0.8339262 0.8622124 0.870567 0.8915376 0.8874434
Subj. 5 BIC −0.4293568 −0.1301492 −0.2332713 −0.1893004 −0.0785205 −0.0785205 −0.1037789

) −36.39221 −2.713806 −16.49461 −10.28732 −0.3171311 −0.3171311 1.909425
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.5943077 0.8080594 0.7392855 0.7728783 0.8180146 0.8180146 0.8268
Subj. 6 BIC −0.889972 −0.8215541 −0.806314 −0.806314 −0.7942027 −0.7942027 −0.8361424

) −77.84757 −64.94025 −68.06844 −68.06844 −64.72853 −64.72853 −66.2532
k 1 4 (M = 1) 2 2 (L = 1) 3 (N = 2) 3 (N = 2, L = 1) 4 (N = 1)

R2 0.3060886 0.4791225 0.4416253 0.4416253 0.4815675 0.4815675 0.4637012
Subj. 7 BIC 0.06301325 0.931199 0.5468022 0.6998209 0.9153664 0.994172 0.9663915

) 7.921098 99.55724 53.712 69.73359 89.13269 98.4751 98.22476
k 1 7 (M = 2) 2 3 (L = 2) 3 (N = 2) 4 (N = 2, L = 2) 5 (N = 2)

R2 0.822592 0.9768477 0.9358723 0.9550819 0.9708122 0.9762842 0.976152
Subj. 8 BIC −0.06981755 0.4243652 −0.04736354 0.01573717 0.5030743 0.5030743 0.4660785

) −4.033675 53.9422 0.2370907 10.41596 52.0264 52.0264 53.19659
k 1 7 (M = 2) 2 4 (L = 3) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.818725 0.950018 0.835138 0.8685125 0.9478442 0.9478442 0.949183
Subj. 9 BIC −0.5079065 −0.1027510 −0.2383149 −0.2164381 −0.04661070 −0.02110402 −0.08283697

) −43.46168 6.501747 −16.94853 −10.47981 2.554751 9.350162 3.794196
k 1 7 (M = 2) 2 4 (L = 3) 3 (N = 2) 5 (N = 2, L = 3) 5 (N = 2)

R2 0.5728458 0.8592695 0.7630228 0.7947529 0.8463684 0.8679014 0.8505421
Subj. 10 BIC −0.003053316 0.2796558 0.1584040 0.1584040 0.3505660 0.3505660 0.3135072

) 1.975106 40.91836 18.75617 18.75617 38.30066 38.30066 39.46517
k 1 7 (M = 2) 2 2 (L = 1) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.8457002 0.9350582 0.8937298 0.8937298 0.9311684 0.9311684 0.9329268
Subj. 11 BIC −0.2700566 −0.1871847 −0.2255619 −0.2230210 −0.1423689 −0.1423689 −0.1699919

) −22.05519 −7.847002 −15.80076 −13.32218 −6.063485 −6.063485 −4.049744
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.7203672 0.7960776 0.7566526 0.7696937 0.8040017 0.8040017 0.8125792
Subj. 12 BIC 0.6560692 0.6922386 0.6684267 0.6902837 0.7099167 0.7099167 0.6881244

) 61.29613 71.3011 64.65822 68.87525 72.89212 72.89212 75.43063
k 1 4 (M = 1) 2 3 (L = 2) 4 (N = 3) 4 (N = 3, L = 1) 6 (N = 3)

R2 0.9599539 0.9679371 0.9628368 0.9661612 0.969051 0.969051 0.9707485
Subj. 13 BIC 0.1819191 0.3825154 0.1809258 0.1895696 0.4669456 0.4669456 0.4180962

) 18.62263 50.17572 20.78313 23.81098 51.02472 51.02472 51.12809
k 1 7 (M = 2) 2 3 (L = 2) 4 (N = 3) 4 (N = 3, L = 1) 6 (N = 3)

R2 0.8966201 0.9487236 0.9014662 0.907878 0.949682 0.949682 0.9497974
Subj. 14 BIC −0.3750792 0.2928246 0.07876666 0.1514760 0.3193653 0.3370422 0.3063921

) −31.50722 35.35384 11.58881 20.38256 37.7424952 41.58332 41.07471
k 1 4 (M = 1) 2 3 (L = 2) 4 (N = 3) 5 (N = 3, L = 2) 6 (N = 3)

R2 0.5405841 0.8960246 0.823686 0.8549832 0.9013998 0.9094663 0.9084373
Subj. 15 BIC −0.1864200 0.5168088 0.3036101 0.3712093 0.6310682 0.6346396 0.6142429

) −14.52789 71.26174 31.82471 40.15855 68.04566 70.617 71.0312
k 1 11 (M = 3) 2 3 (L = 2) 5 (N = 4) 6 (N = 4, L = 2) 7 (N = 4)

R2 0.6907225 0.9540386 0.8895922 0.9082576 0.9506335 0.9533753 0.9538025
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Table 3 (continued)

NAI UNR STE STG RAT SEP LUC

Subj. 16 BIC 0.3646675 0.373256 0.3695325 0.3695325 0.4914183 0.4914183 0.4418359
) 35.06998 49.34237 37.75773 37.75773 53.22727 53.22727 53.26466
k 1 7 (M = 2) 2 2 (L = 1) 4 (N = 3) 4 (N = 3, L = 1) 6 (N = 3)

R2 0.9300895 0.9490904 0.9341428 0.9341428 0.953301 0.953301 0.9533399
Subj. 17 BIC 0.03272841 0.1845817 0.1188421 0.1753542 0.2901779 0.2901779 0.2669342

) 5.195462 25.61197 15.1956 22.53160 37.36554 37.36554 39.77342
k 1 4 (M = 1) 2 3 (L = 2) 5 (N = 4) 5 (N = 4, L = 1) 7 (N = 4)

R2 0.8705023 0.9177336 0.8963067 0.911905 0.9366438 0.9366438 0.9399448
Subj. 18 BIC 0.2012491 0.1447155 0.1838974 0.1838974 0.1838974 0.1838974 0.1601324

) 20.36232 22.02402 21.05057 21.05057 21.05057 21.05057 23.41153
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9077214 0.9110668 0.909122 0.909122 0.909122 0.909122 0.913767
Subj. 19 BIC 0.05036855 0.3045986 0.2957756 0.2957756 0.3119448 0.3119448 0.2834988

) 6.783075 36.41349 31.11961 31.11961 34.82475 34.82475 36.76442
k 1 4 (M = 1) 2 2 (L = 1) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.8660056 0.9306377 0.9219784 0.9219784 0.928145 0.928145 0.9311765
Subj. 20 BIC 0.0008843687 0.4981021 0.2850017 0.3068166 0.5239892 0.5239892 0.4895544

) 2.329498 53.82881 30.14996 34.36321 53.90874 53.90874 55.30942
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.8263914 0.944722 0.906443 0.914805 0.9448201 0.9448201 0.9465112

Fig. 3. Subjective weighting functions W for the distance experiment (WSTE in solid line, WSEP in dashed line, WLUC in dotted line).

of the average mean squared errors in the two experiments (see
Table 2) that subjects may have found the area experiment sim-
pler than the distance experiment. Comparison with evidence

from Augustin and Perner (2007) suggests that this could possi-
bly be due to the fact that the estimated distances in the present
experiment are evaluated on a map and not along a straight line.
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Table 4
Best models for the area experiment

NAI UNR STE STG RAT SEP LUC

Subj. 1 BIC 0.2621907 0.3377861 0.285469 0.3043100 0.3114141 0.3361342 0.3362895
) 25.84707 39.40037 30.19202 38.63742 34.77698 43.75151 41.51558
k 1 4 (M = 1) 2 5 (L = 4) 3 (N = 2) 6 (N = 2, L = 4) 5 (N = 2)

R2 0.8973289 0.9240294 0.9067787 0.9227304 0.915809 0.9310312 0.9275177
Subj. 2 BIC −0.1855750 0.1534926 0.1910611 0.1915993 0.1957590 0.1957590 0.1621803

) −14.45184 22.81396 21.69530 23.99365 24.36802 24.36802 23.59585
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 3 (N = 2, L = 1) 4 (N = 1)

R2 0.7401156 0.8864654 0.8836077 0.889403 0.8903193 0.8903193 0.888421
Subj. 3 BIC 0.4255609 0.8964653 0.7960929 0.8216036 0.9007902 0.9007902 0.9088349

) 40.55039 89.6815 76.14817 80.69404 87.82083 87.82083 93.04466
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.9392501 0.9796117 0.9724582 0.9751046 0.978751 0.978751 0.9810799
Subj. 4 BIC 0.1053783 0.4902343 0.5398454 0.5398454 0.5398454 0.5398454 0.4930673

) 11.73395 53.12071 53.08589 53.08589 53.08589 53.08589 53.37568
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.904865 0.9620757 0.9620464 0.9620464 0.9620464 0.9620464 0.96229
Subj. 5 BIC 0.3657834 0.7382387 0.7868529 0.7868529 0.7868529 0.7868529 0.7394617

) 35.17041 75.4411 75.31657 75.31657 75.31657 75.31657 75.55117
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9393223 0.9752043 0.9751355 0.9751355 0.9751355 0.9751355 0.9752648
Subj. 6 BIC 0.2454235 0.4994049 0.3938799 0.3938799 0.3938799 0.3938799 0.3650065

) 24.33802 69.69539 39.949 39.949 39.949 39.949 41.85021
k 1 11 (M = 3) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9176306 0.9699377 0.9417757 0.9417757 0.9417757 0.9417757 0.9441844
Subj. 7 BIC 0.8108012 0.7747367 0.7875024 0.7875024 0.7875024 0.7875024 0.7768528

) 75.22201 78.72592 75.37502 75.37502 75.37502 75.37502 78.91637
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9695695 0.971849 0.9696728 0.9696728 0.9696728 0.9696728 0.971968
Subj. 8 BIC 0.4869596 0.5630296 0.5887466 0.5887466 0.5887466 0.5887466 0.5659399

) 46.07627 59.67228 57.487 57.487 57.487 57.487 59.93421
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9462581 0.9602719 0.958295 0.958295 0.958295 0.958295 0.9605025
Subj. 9 BIC 0.4338529 0.5106484 0.4673291 0.5935465 0.4673291 0.6037674 0.4706943

) 41.29666 54.95797 46.55943 62.41880 46.55943 65.58859 51.36211
k 1 4 (M = 1) 2 4 (L = 3) 2 (N = 1) 5 (N = 2, L = 3) 4 (N = 1)

R2 0.950938 0.963784 0.956353 0.9358723 0.9693171 0.971404 0.9607713
Subj. 10 BIC 0.1754839 0.1175000 0.1621125 0.1621125 0.1621125 0.1621125 0.1187090

) 18.04346 19.57462 19.08994 19.08994 19.08994 19.08994 19.68343
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.8979018 0.9013174 0.9002487 0.9002487 0.9002487 0.9002487 0.9015557
Subj. 11 BIC 0.8062462 0.7759063 0.7812716 0.787731 0.7812716 0.787731 0.772499

) 74.81207 78.83119 74.81425 77.6455 74.81425 77.6455 78.52453
k 1 4 (M = 1) 2 3 (L = 2) 2 (N = 1) 3 (N = 1, L = 2) 4 (N = 1)

R2 0.9689395 0.9715933 0.968941 0.9708349 0.968941 0.9708349 0.971399
Subj. 12 BIC 0.3869065 0.378466 0.362477 0.4046298 0.3712455 0.4046298 0.3726489

) 37.07149 43.06156 37.12274 45.4163 44.66162 45.4163 42.53802
k 1 4 (M = 1) 2 4 (L = 3) 5 (N = 4) 4 (N = 1, L = 3) 4 (N = 1)

R2 0.944892 0.9517604 0.9449548 0.9542197 0.9534455 0.9542197 0.9511959
Subj. 13 BIC 0.458778 0.4085165 0.4356576 0.4356576 0.4356576 0.4356576 0.3961295

) 43.53992 45.7661 43.709 43.709 43.709 43.709 44.65127
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.947167 0.9497171 0.9473652 0.9473652 0.9473652 0.9473652 0.9484558
Subj. 14 BIC 0.5558471 0.5220074 0.5412942 0.5412942 0.5412942 0.5412942 0.517969

) 52.27614 55.98029 53.21629 53.21629 53.21629 53.21629 55.61683
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9505961 0.9544999 0.9516176 0.9516176 0.9516176 0.9516176 0.954131
Subj. 15 BIC 0.2227264 0.2229523 0.203932 0.2180478 0.2058636 0.2268932 0.2022725

) 22.29528 29.06533 22.85369 28.62392 29.77724 31.66991 31.70395
k 1 4 (M = 1) 2 4 (L = 3) 5 (N = 4) 5 (N = 2, L = 3) 6 (N = 3)

R2 0.9258118 0.936174 0.9267267 0.935545 0.9371759 0.9397634 0.939809
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Table 4 (continued)

NAI UNR STE STG RAT SEP LUC

Subj. 16 BIC 0.6950906 0.6833691 0.7331783 0.7331783 0.7331783 0.7331783 0.6832526
) 64.80806 70.50284 70.48586 70.48586 70.48586 70.48586 70.49235
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9661618 0.9701842 0.970173 0.970173 0.970173 0.970173 0.9701772
Subj. 17 BIC 0.5736484 0.7394149 0.6172378 0.6833293 0.6283050 0.6833293 0.7347015

) 53.87826 75.54696 60.05121 72.74916 67.79698 72.74916 75.12275
k 1 4 (M = 1) 2 5 (L = 4) 5 (N = 4) 5 (N = 1, L = 4) 4 (N = 1)

R2 0.9476398 0.9676498 0.9543515 0.9655746 0.9615698 0.9655746 0.9673434
Subj. 18 BIC 0.1667158 0.2979954 0.2988104 0.2988104 0.3319582 0.3319582 0.2935370

) 17.25433 35.81921 31.39275 31.39275 36.62595 36.62595 37.66786
k 1 4 (M = 1) 2 2 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.8907787 0.9277 0.9202267 0.9202267 0.9289847 0.9289847 0.93061
Subj. 19 BIC 0.1533406 0.1529293 0.1620068 0.1620068 0.1620068 0.1620068 0.1529397

) 16.05056 22.76325 19.08043 19.08043 19.08043 19.08043 22.76419
k 1 4 (M = 1) 2 2 (L = 1) 2 (N = 1) 2 (N = 1, L = 1) 4 (N = 1)

R2 0.9106638 0.9230439 0.9164808 0.9164808 0.9164808 0.9164808 0.9230455
Subj. 20 BIC 0.7959745 0.9065617 0.7904392 0.8301603 0.932089 0.932089 0.9042947

) 73.88761 90.59017 75.63934 81.46414 90.63772 90.63772 92.63605
k 1 4 (M = 1) 2 3 (L = 2) 3 (N = 2) 3 (N = 2, L = 1) 5 (N = 2)

R2 0.9666907 0.977019 0.9679624 0.9718522 0.9770433 0.9770433 0.9780404

Fig. 4. Psychophysical functions ψ for the distance experiment (ψSTE in solid line, ψSEP in dashed line, ψLUC in dotted line).

5.2. Graphs

The statistical analysis we have proposed, based on
the method of polynomial approximation, provides us with

simultaneous estimates of both the functions ψ and W −1

and allows us to measure how much the data conform to
the theories. This can be quantified through goodness-of-fit
measures (see R2 in Tables 3 and 4) and checked through
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Fig. 5. Subjective weighting functions W for the area experiment (WSTE in solid line, WSEP in dashed line, WLUC in dotted line).

graphical methods. In the following we will show how these
graphical analyses can be performed.

As explained above, the functions ψ are defined up to a
multiplicative transformation (i.e. if a separable representation
holds with ψ , then also k · ψ yields a separable representation
for any k &= 0), while the couples (ψ, W ) are defined up
to a power transformation (i.e. if a separable representation
holds with (ψ, W ), then also (ψr , W r ) yields a separable
representation for any r &= 0). This implies that, when imposing
identification in the estimations as we did above, the functions
are not immediately comparable. Therefore, the functions have
been rescaled (in particular, we chose values of k and r that
minimize a certain distance between the ψ functions; details
are available from the authors upon request). The functions W
are obtained through numerical inversion of W −1.

Figs. 3 and 4 reproduce respectively the subjective weight-
ing functions W and the psychophysical functions ψ for the
distance experiment for every individual (STE in solid line,
SEP in dashed line, LUC in dotted line). In both figures we
see that for most individuals the functions estimated for SEP
and for LUC are nearer to each other than those estimated for
STE. This is in line with the fact that while in the distance
experiment a separable representation is accepted for most
individuals, the selected models are never of the simple Stevens
type.

Similarly, Figs. 5 and 6 represent for the area experiment
the subjective weighting functions W and the psychophysical
functions ψ estimated for every individual (STE in solid
line, SEP in dashed line, LUC in dotted line). Two main
characteristics of the diagrams are worth noticing. In the
diagrams of the psychophysical functions ψ , we see that for
most individuals there are little differences in the estimated
functions ψSTE, ψSEP and ψLUC. In fact, the three functions
are almost linear for most individuals. This could be due to the
fact that subjects have not found the area experiment to be very
difficult (and in any case easier than the distance experiment),
with rather precise perceptions of the stimuli (which is what
the functions ψ capture). At the same time, we still see some
deformations of numerical ratios as portrayed in the subjective
weighting functions WSTE, WSEP, and WLUC.

After that, we show the fit of the different regression models
(see Figs. 7 and 8). For every individual, we plot on logarithmic
axes W (p) (where p is the ratio as stated by the subject) against
ψ (d1) /ψ (d2): the empty circles represent the STE model, the
solid circles the SEP model, and the squares the LUC model.
The points are expected to be quite near to the diagonal of the
diagrams whenever the fit is good. These graphs convey some
useful information. First of all, most subjects seem quite precise
in their assessments with only few participants displaying
more noisy patterns (especially in the distance experiment).
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Fig. 6. Psychophysical functions ψ for the area experiment (ψSTE in solid line, ψSEP in dashed line, ψLUC in dotted line).

Secondly, all the models seem to fit the data rather well;
nevertheless, for various individuals (and more in the distance
experiment), there seems to be a better fit for the SEP and
LUC models than for the STE ones, as also mirrored through
the values of R2. At last, some heteroskedasticity seems to be
present in the data, in the sense that the variances of the elicited
ratios are larger when the elicited ratio is large.

Our approach allows us to evaluate the expected value
of the elicited ratio p according to the different models
as a function of the stimuli d1 and d2. In order to stress
the difference with respect to the real value of p (namely
d1
d2

), Fig. 9 shows the deviations from the NAI model of
the values predicted by the main models estimated for
three individuals of the distance experiment: subject 1 (first
row), subject 3 (second row), and subject 7 (third row).16

The deviations are as follows:
[(

d1
d2

)κ
− d1

d2

]
for STE (the

first column),
[
W −1

SEP

(
ψSEP(d1)
ψSEP(d2)

)
− d1

d2

]
for SEP (the second

column),
[
W −1

LUC

(
ψLUC(d1)
ψLUC(d2)

)
− d1

d2

]
for LUC (the third column)

and
[

F(d1, d2) − d1
d2

]
for UNR (the fourth column). In the

16 The individuals have been chosen in order to illustrate the potential
usefulness of this analysis. The graphs of all subjects are available from the
authors.

diagrams the solid lines are the isolines or level sets of
the surface; we represent the level curves corresponding to
multiples of 0.05 units. A caveat concerns the graphs of the
UNR model, since the function F is meaningfully defined only
in the lower diagonal part of the square, the one in which
d1 ≥ d2: therefore, we have defined

[
F(d1, d2) − d1

d2
= 0

]
for

d1 < d2. The main conclusion of these graphs is the inadequacy
of Stevens’ model to take into account the structure of the ratios
elicited from the three individuals. In particular, the estimated
STE models represent the data as if biases were constant along
straight lines; whereas the isolines are often highly nonlinear
and similar across all the other three models SEP, LUC and
UNR. For all these three models the region with the highest
bias is the one with large values of d1 and intermediate values of
d2, while for the STE model the highest bias is associated with
high values of d1

d2
. For example, for subject 3, when d1 = 15

and d2 = 10, the values of p predicted by the best models of
the SEP, LUC, UNR and STE classes are in all cases around
1.6 (as can be checked by inspection of the graphs in terms
of deviations from the NAI model). On the other hand, when
d1 = 15 and d2 = 5, the values of p predicted by the best
models of the SEP, LUC and UNR classes are all close to 3.1,
while the value is around 3.4 according to the STE model.
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Fig. 7. W (p) and ψ (d1) /ψ (d2) on a logarithmic scale for the distance experiment (STE in circles, SEP in solid circles, LUC in squares).

6. Conclusion

We summarize the object of this paper and its relationship to
the literature as follows.

We started from a basic question in the behavioral sciences
concerning the ability of individuals to perceive and organize
stimuli in a meaningful quantitative scale. We have focused
on ratio scale measures which, since Stevens’ (1946) famous
classification, are considered by the scientific community as the
very essence of quantitative scientific measurements. We have
also recalled how, precisely for this reason, Stevens’ theory
has originated several controversies and has spawned a large
literature (see e.g. Michell, 1999, for a thorough review in a
historical perspective).

We have surveyed various theories generalizing Stevens’
original power-law model, and have illustrated the importance
in the more general theories to clearly distinguish a
psychophysical function ψ – which captures the transformation
from the stimulus to the perception –, and a subjective
weighting function W – which renders the perception of
proportions. We have referred to Narens (1996, 2002) and
Luce (2002, 2004) as the most lucid treatments of these
generalizations.

We have, however, also noted how, despite the great effort
to root ratio scale representations on sound scientific bases,
less attention has been paid in the past to formally testing
separable representations. This has changed in recent years,
with a series of experiments which have shown the empirical
validity of various behavioral properties underlying models of
psychophysical judgments. Important experiments conducted
in this wave include Ellermeier and Faulhammer (2000),
Zimmer (2005), and the recent series by Steingrimsson and
Luce (2005a,b, 2006, 2007).

Our approach has differed from the above since it was
designed to evaluate whether individual subjective assessments
are overall consistent with ratio scale representations, and
to provide a method to coherently and jointly estimate the
functions ψ and W . We have classified various theories of ratio
scale representations and have adopted the statistical approach
of model selection (Pitt et al., 2002; Wasserman, 2000;
Zucchini, 2000) to determine the most appropriate models for
describing the data which we have obtained from two simple
ratio estimation experiments: one in which participants were
asked to compare distances between cities on a map, and
another one in which subjects were asked to compare the areas
of two sections of disks displayed on a computer screen.
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Fig. 8. W (p) and ψ (d1) /ψ (d2) on a logarithmic scale for the area experiment (STE in circles, SEP in solid circles, LUC in squares).

We have found substantial support for separable representa-
tions. On the one hand, we have seen that in both experiments,
and for the great majority of individuals, econometric mod-
els estimated under restrictions imposed by different classes of
separable models were selected as best models even over spec-
ifications left unrestricted. This is important since it shows that
separable forms can resolve quite efficiently the delicate trade-
off between simplicity and accuracy which, as in any scientific
analysis, also emerges in the study of ratio estimation exper-
iments. On the other hand, we have however also seen some
heterogeneity among the separable models selected for differ-
ent individuals and between the two experiments. Both types
of evidence are perhaps not surprising, but they confirm just
how difficult is the study of subjective measurements to obtain
propositions of general validity.

Compared to the previous experiments referred to above,
one new piece of evidence is that we found some support for
separable representations implying a multiplicative property,
described at length by Luce (2005) and Narens (1996), which
was instead rejected in direct tests of the hypothesis by
Ellermeier and Faulhammer (2000) and Zimmer (2005) in
experiments conducted with auditory stimuli. The different
stimuli may clearly have had an effect, but also the different
statistical approach could be important.

In this respect, we conclude by acknowledging an obvious
limitation of the statistical model selection approach itself.
In particular, there is no theorem that states that nature is
simple. We certainly agree with most scientists in preferring
simpler models to more complex ones; but we also believe
that statistics, which incorporates a cost function based on
the number of parameters, is not alone sufficient to resolve
major controversies in science. We more simply believe that
model selection statistics are useful measures that need to be
considered when models are being fit.
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Fig. 9. Deviations from the NAI model predicted by models STE (first column), SEP (second column), LUC (third column) and UNR (fourth column) for three
individuals of the distance experiment (subject 1 — first row, subject 3 — second row, subject 7 — third row).
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Appendix. Estimation algorithms

The estimation of models of Section 4.2 can be quite
daunting in practice. Therefore, in this Appendix, we propose
some algorithms based on iterative procedures. A rationale
behind these estimation algorithms can be obtained through the
Theorems in Jensen, Johansen, and Lauritzen (1991).

In the case with SEP regression part, if
(
φ(i), γ(i), σ

2
(i)

)
are

the parameter values available at step i , we want to compute:

γ(i+1) = arg max
γ

)
(
φ(i), γ , σ 2

(i)

)
,

φ(i+1) = arg max
φ

)
(
φ, γ(i+1), σ

2
(i)

)
,

σ 2
(i+1) = arg max

σ 2
)
(
φ(i+1), γ(i+1), σ

2
)

.

The update of γ is performed through numerical optimization;
when γ(i+1) is fixed, φ(i+1) can be computed through least
squares. Since optimization with respect to γ is a very
demanding task, the whole algorithm for the model with
(φ, γ ) ∈ RL × RN starts at the final estimates for the model
with (φ, γ ) ∈ RL × RN−1 (the last element of γ is put equal
to 0). As concerns LUC models, the method is analogous to the

previous one but in this case the least squares step is replaced
by numerical optimization because of the nonlinear nature of
the function w−1.
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