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lishing priorities in multicriteria decision problems. Underlying the AHP is the theory of ratio-scale mea-

sures developed in psychophysics since the middle of the last century. It is, however, well known that classical
ratio-scaling approaches have several problems. We reconsider the AHP in the light of the modern theory of
measurement based on the so-called separable representations recently axiomatized in mathematical psychol-
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reliable decision-making procedure in terms of the modern theory of subjective measurement.
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1. Introduction
The analytic hierarchy process (AHP) is a decision-
making procedure originally developed by Saaty
(1977, 1980, 1986). Its primary use is to offer solutions
to decision and estimation problems in multivariate
environments. The AHP establishes priority weights
for alternatives by organizing objectives, criteria, and
subcriteria in a hierarchic structure.
Central to the AHP is the process of measurement,

in particular measurement on a ratio scale. Given a
set A1! " " " !An of items of a decision problem (for
example, n alternatives) to be compared for a given
attribute (for example, one criterion), in the AHP, a
response matrix A= #aij $ is constructed with the deci-
sion maker’s assessments aij , taken to measure on a
subjective ratio scale the relative dominance of item i
over item j . For all pairs of items i, j , it is assumed that

aij =
wi

wj

· eij! (1)

where wi and wj are underlying subjective prior-
ity weights belonging to a vector w = %w1! " " " !wn&

′,
with w1 > 0! " " " !wn > 0 and, by convention,

∑

wj = 1,
and where eij is a multiplicative term introduced to
account for random errors and inconsistencies often
observed in practice. It is assumed that eij is close to 1,
is reciprocally symmetric eij = e−1

ji , with eii = 1 for all i.

The AHP has spawned a large literature. Crit-
ics have referred to both technical and philosophical
aspects of the AHP. Concerns have especially been
expressed about the distance of the AHP from the
axioms of classical utility theory (Dyer 1990, Smith
and von Winterfeldt 2004). Defenders of the AHP
have always rejected the criticism, arguing that the
normative foundations of the AHP are not in util-
ity theory, but in the theory of measurement (Harker
and Vargas 1990, Saaty 1990, Forman and Gass 2001).
Appeal has often been made to the psychophysi-
cist Stevens (1946, 1951) and his famous ratio-scaling
method.
In this paper, we reconsider the AHP in the light

of the newer theory of psychological measurement.
Indeed, in spite of the reference of the AHP defenders
to the work of Stevens (1946, 1951), it is well known
in mathematical psychology that Stevens’ theory had
several problems (Michell 1999). For mathematical
psychologists, a major drawback of the theory has
always been seen in the lack of proper mathematical
and philosophical foundations justifying the proposi-
tion that, when assessing a ratio judgment, a “subject
is, in a scientific sense, ‘computing ratios’ ” (Narens
1996, p. 109).
In recent years, however, there has been an impor-

tant stream of research clarifying the conditions and
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giving various sets of axioms that can justify ratio esti-
mations. A relevant achievement of the recent litera-
ture has been the axiomatization of various theories
of subjective ratio judgments belonging to a class of
so-called separable representations (Narens 1996, 2002;
Luce 2002, 2004).
Separable representations are important because

they make it clear that individual ratio judgments can
be subject to various cognitive distortions. In particu-
lar, they imply that Equation (1) of the classical AHP
approach can be recast as

aij =W−1
(

wi

wj

)

· eij! (2)

where W−1%·& is the inverse of a subjective weighting
function W %·& relating elicited subjective proportions
to numerical ratios. Clearly, Equations (1) and (2) are
equivalent only when W is the identity.
In the following, we will analyze Equation (2) under

various perspectives. We will start with a review of
the ratio-scaling method of the classical AHP. We
will move on to consider the relationships between
the AHP and the modern theory of measurement,
and will develop a statistical method to estimate the
priority vector w = %w1! " " " !wn&

′ from Equation (2),
which takes into account possible nonlinearities in the
subjective weighting function W . Afterward, we will
apply the method to some experimental data we have
obtained from subjective ratio estimation experiments.
We will then compare the results obtained by the clas-
sical AHP with those obtained by our method and will
discuss the implications of the findings for the status
and the practice of the AHP.

2. Scaling and Prioritization in the
Classical AHP

In the 1977 paper by Saaty and subsequent book
(Saaty 1980), the AHP was developed as a set of oper-
ational procedures without axiomatic foundations.
Axioms were later added by Saaty (1986). Central in
Saaty’s (1986) system of axioms is the primitive notion
of “fundamental scales.” Let ! be a set of alternatives
Ai with i = 1! " " " !n and n finite, and let C be one
among a set of criteria to compare the alternatives.
A fundamental scale for criterion C is a mapping PC ,
which assigns to every pair %Ai!Aj& ∈!×! a positive
real number PC%Ai!Aj&≡ aij such that (1) aij > 1 if and
only if Ai dominates (or “is strictly preferred to”) Aj

according to criterion C, and (2) aij = 1 if and only if
Ai is equivalent (or “indifferent”) to Aj according to
criterion C.
Operationally, the aij ’s are obtained as the decision

maker’s assessments of the subjective response matrix
A = #aij $ in the Introduction. It is also important to
remark that in the AHP, the notion of fundamental

scale does not apply only to preference criteria, but is
also relevant for carrying out estimation.1
Four axioms are given by Saaty (1986) to char-

acterize various operations that can be performed
with fundamental scales. The first axiom establishes
A = #aij $ as a positive reciprocally symmetric matrix,
that is, aij · aji = 1 and aii = 1 for all Ai!Aj ∈ !. The
second, the so-called homogeneity axiom, suggests
aggregating or decomposing the items of a decision
into clusters or hierarchy levels so that the stimuli
do not differ too much in the property being com-
pared. Otherwise, large errors in judgment may occur.
Based on empirical research, the AHP has elaborated
various scale models to elicit judgments, including
Saaty’s (1977, 1980) famous verbal scale with integers
from 1 to 9 for intensities of relative importance. The
third and fourth axioms give conditions for hierarchic
composition. They are not relevant for the present
discussion.2

A fundamental scale PC does not give directly a
scale of priorities. A scale of priorities is, in Saaty’s
(1986) language, an n-dimensional vector w%A& =
%w1! " " " !wn&

′ obtained from matrix A= #aij $, with 1≥
wi ≥ 0, such that the ith component of w%A& accu-
rately represents the relative dominance of alterna-
tive Ai among the n alternatives in !. One question
that has triggered off a lot of debate over the AHP
concerns the best prioritization method, that is, the
best method to obtain the vector %w1! " " " !wn&

′ from
A= #aij $.
The issue is complicated by the fact that the AHP

acknowledges that people can be subject to random
errors and inconsistencies. This feature of the AHP is
transparent in Equation (1) of the Introduction for the
relationship between the aij ’s and the priority weights
with the multiplicative error term eij .
The error terms eij have various implications. First

of all, they imply that the ratio judgments obtained by
the AHP may violate an important property known
as cardinal consistency, aij = aik · akj , or even a weaker
requirement of ordinal consistency, namely, that when
aij > 1 and ajk > 1, then also aik > 1.
Second, the possibility of consistency violations

poses the problem of estimating the priority weights
w = %w1! " " " !wn&

′ in an appropriate way. The tech-
nique proposed by Saaty in his original paper
(Saaty 1977) and defended ever since is the maxi-
mum eigenvalue (ME) method. It uses the response

1 For example, in choosing which car to buy, a decision maker may
be interested in estimating the relative fuel consumption of various
cars, which is then weighted with other preference criteria, before
making the final decision.
2 They are also more controversial due to the problem of rank rever-
sal, which may plague the AHP analyses (Dyer 1990). Extensions
of the AHP techniques can avoid rank reversal (Pérez 1995). In this
paper, we will not deal with this issue.
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matrix A= #aij $ to solve for the column vector w =
%w1! " " " !wn&

′ the linear system of equations

Aw= 'maxw!
n
∑

i=1

wi = 1! (3)

where 'max > 0 is the largest eigenvalue in modulus
(that is, the Perron eigenvalue) of A. It is known from
the Perron-Frobenius theorem that system (3) has a
unique solution, the Perron eigenvector, henceforth
denoted by (w = %(w1! " " " ! (wn&

′. Moreover, if eij = 1 for
all pairs %i! j& so that A is cardinally consistent, the ME
method delivers the correct priority weights (wi =wi

for all i, and the maximum eigenvalue is at its mini-
mum value 'max = n. When A is not cardinally consis-
tent, (w= %(w1! " " " ! (wn&

′ usually differs from the correct
priority vector, and 'max > n. The normalized differ-
ence %'max − n&/%n− 1& is proposed in the AHP as a
consistency index. In particular, if the index for a cer-
tain response matrix is larger than a given cutoff, the
AHP suggests correcting the matrix restating the sub-
jective judgments of the individuals until near consis-
tency is reached (various methods are offered in the
AHP for conducting such a revision; Saaty 2003).
The ME method has, however, been criticized for

not paying attention to the stochastic structure of the
data (de Jong 1984). Several alternative techniques for
estimating w have therefore been proposed. The loga-
rithmic least squares method (LLSM), which remains
the most popular alternative for statistical standards
(de Jong 1984, Crawford and Williams 1985, Genest
and Rivest 1994), is mentioned below.

3. Separable Representations and
the AHP

As is well known, the original idea of developing
analytical procedures and experimental techniques
for constructing subjective ratio measurement scales
was due to Stevens (1946, 1951, 1975). A long his-
tory of controversies has followed the approach and
ratio-scaling methods more generally (Anderson 1970,
Shepard 1978, Michell 1999). Much of the concern
has focused on the philosophical and theoretical jus-
tifications for the correspondence, also assumed by
the AHP, between the number names in the instruc-
tion of the subjective scaling procedures and scientific
numbers.
In the last 10 years or so, however, a great

effort has been made by mathematical psychologists,
notably Narens (1996, 2002) and Luce (2002, 2004),
to comprehend in a deeper perspective the structural
assumptions inherent in the ratio-scaling approach.
To illustrate, consider a ratio estimation task in which
an individual is provided with two stimuli, z and x,
and then is asked to state the value p that corresponds
to the subjective ratio of z to x.

Formally, a separable representation is said to hold
in a ratio estimation if there exist a psychophysical func-
tion ( and a subjective weighting function W such that
the ratio p is in the following relation with z and x:

W %p&= (%z&

(%x&
" (4)

Equation (4) corresponds to Narens’ (1996) origi-
nal model and incorporates the notion that indepen-
dent distortions may occur both in the assessment
of subjective intensities and in the determination of
subjective ratios (see also Luce 2002). Stevens’s (1951,
1975) classical model applies when W can be rep-
resented as the identity function and ( is a power
function.
Narens (1996) developed the model in the tradi-

tion of representational measurement theory. Cen-
tral in the axiomatization is the distinction between
numerals, which are the response items p provided
by the subject to the experimenter, and scientific num-
bers. Narens (1996), in particular, argued that the case
W %p&= p is anything more than a coincidence. He
showed that a specific behavioral property, which he
called “multiplicativity,” must hold. He instead sug-
gested that a weaker property, which underlies repre-
sentation (4), may hold. The condition is called “com-
mutativity.” It implies that a subjective proportion,
say, of 2 multiplied by a subjective proportion of 3
is equivalent to a subjective proportion of 3 multi-
plied by a subjective proportion of 2, though neither
products of subjective proportions is equivalent to a
subjective proportion of 6, for which the full force of
the multiplicative property is necessary.
Form (4) has been also axiomatized by Luce (2002,

2004, 2008) as a special case of a global theory of
psychophysics, developed from empirically testable
assumptions relating sensorial stimuli intensities (like
auditory or visual). Tests rejecting multiplicativ-
ity but not commutativity have been conducted
by Ellermeier and Faulhammer (2000) and Zimmer
(2005) in loudness magnitude production experi-
ments.3 Other recent evidence in favor of separable
representations has been obtained by Steingrimsson
and Luce (2005a, b) and Bernasconi et al. (2008).
The axiomatic approach underlying separable rep-

resentations also has direct application in the context
of utility theory for gambles where ( is called utility,
with domain represented by valued goods, and W
is a subjective weighting function of probabilities or
events that generalizes the classical expected utility
model. Examples include cumulative prospect theory

3 Ratio production is a dual scaling procedure widely used in psy-
chophysics in which an observer is required to produce a stimulus
x that appears p times more intense than a reference stimulus.
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(Tversky and Kahneman 1992) and the class of rank-
dependent utility models.4

3.1. AHP in Separable Form
Separable representations also have a natural inter-
pretation in the AHP. In the AHP, the primitives are
the alternatives %A1! " " " !An& and the ratio estimation
task that leads to the subjective assessments aij . The
AHP also assumes the existence of a fundamental
scale of alternatives, but it does not deal with the
question of the qualitative properties that must be
satisfied by the ratio estimation task for the priority
vector %w1! " " " !wn&

′ to represent a ratio scale.
On the contrary, by directly applying the rep-

resentational theory of measurement to the alter-
natives A1! " " " !An, the relationships between the
alternatives and the subjective responses aij should
be written as W %aij& = (%Ai&/(%Aj&, which, using
the normalization w1 = (%A1&/%

∑

(%Ak&&! " " " !wn =
(%An&/%

∑

(%Ak&&, yields

W %aij&=
wi

wj

" (5)

Representation (5) and Equation (1) of the classical
AHP differ in two respects: the ratio form of Equa-
tion (1) restricts the weighting function W %·& to be the
identity, whereas representation (5) ignores consider-
ations of errors eij . As noted in §2, errors eij repre-
sent an important source of possible inconsistencies
in the AHP. In the following, we will recomprehend
the effect of errors in a more general stochastic ver-
sion of model (5). Here it is important to emphasize
the implications of separable representations for the
classical AHP, even in the idealized situation in which
the model is thought to hold exactly.
In particular, it should be transparent that in terms

of form (5), the property of cardinal consistency in
the AHP, namely, aij = aik ·akj , is equivalent to Narens’
(1996) multiplicative property, requiring that the sub-
jective weighting W %·& is the identity, or that it takes
the slightly more general power specification W %p&=
pk with k > 0 and W %1&= 1.5

4 Consider a gamble %x!p!y& giving x with probability p and y
otherwise. A rank-dependent utility form is given by U %x!p!y&=
U %x&W %p&+U %y&#1−W %p&$. Many authors have worked with this
form (see Köbberling and Wakker 2003 for the most general results
on this form). When W is linear, the form collapses to the classi-
cal expected utility model. When y = 0, the expression U %x!p!y&=
U %x&W %p& is a separable form.
5 In particular, it is trivial that the power function W %p&= pk always
satisfies multiplicativity (W %p& ·W %q&=W %p · q&) when W %1&= 1. It
is interesting to note that a similar power model for the AHP was
considered by Saaty (1980, p. 189) himself and referred to as the
eigenvalue power law. A subtlety investigated by Steingrimsson
and Luce (2007) is that when multiplicativity fails, W %p& may still
be a power function with W %1& )= 1.

The implication is that whenever W %·& is not the
identity or the power model, violations of cardinal
consistency are inherent in any subjective ratio assess-
ment. At the same time, separable representations
show that when multiplicativity fails but form (5)
holds, ratio estimations may still result into a ratio
scale, though it is necessary to pass through the func-
tion W to interpret the subjects’ subjective measures
of ratios as numerical ratios.
In this respect, an important property of function

W %·& is monotonicity, which follows from the mathe-
matical derivation of separable representations (Luce
2002, p. 522). In the AHP, monotonicity implies ordi-
nal consistency (that if aij > 1 and ajk > 1, then also
aik > 1). Moreover, if W %·& is monotonic, W−1 is invert-
ible so that the actual entries of the AHP response
matrix A= #aij $ are given by

aij =W−1
(

wi

wj

)

" (6)

This is quite important for the AHP, because it implies
that if one knows how to estimate the function W−1%·&
and if W−1%·& is invertible,6 then one can pinpoint
between the elicited numerals aij and the numeri-
cal ratios wi/wj to obtain the priority weights w =
%w1! " " " !wn&

′.
Another important condition on the subjective

weighting function is W %1& = 1, which is necessary
for aii = 1 in the AHP. Reciprocal symmetry, that is,
aij = 1/aji, requires instead that W %·& is reciprocally
symmetric, namely, W %1/·&= 1/W %·&. Both conditions
are implied by several derivations of separable rep-
resentations, including a specification developed by
Luce (2001, 2002), similar to the one that Prelec (1998)
proposed in the context of utility theory for risky
gambles. The more recent specification proposed by
Luce (2004), however, does not impose either. Both
W %1& = 1 and symmetry seem fairly natural in the
context of the AHP. Therefore, we maintain both con-
ditions in what follows.

4. A Separable Statistical Model
for the AHP

The mathematical theories of separable forms “are
about idealized situations and do not involve con-
siderations of error” (Narens 1996, p. 109). This is
acknowledged as a limitation. People are not like

6 An earlier example of form (6) was studied by Birnbaum and Veit
(1974) with a function JR conceptually identical to the inverse func-
tion W−1%·& introduced directly as a monotonic judgmental trans-
formation of a ratio model relating overt magnitude estimation of
ratios to subjective impressions of ratios, and put in connection to
a judgmental transformation JD of a model relating overt rated dif-
ferences to subjective differences.
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robots. Various elements, including lapses of reason
or concentration, states of mind, trembling, rounding
effects, and computational mistakes imply the obvi-
ous notion that no model of human behavior can be
thought to hold deterministically.
This was also remarked by Saaty (1977, 1986) in

the AHP with the notion of the multiplicative errors
eij . We now recomprehend the errors in the separable
specification of the AHP. In particular, introducing the
multiplicative terms eij to model (6), we obtain the
separable statistical form (2) of the Introduction: aij =
W−1%wi/wj& · eij .
Form (2) raises several issues for the AHP. Here we

focus on a procedure for conducting a rigorous statis-
tical analysis of Equation (2), which we then apply to
the data of a ratio estimation experiment in the AHP.
We proceed first showing how to obtain a regression
model from Equation (2), and then present an infer-
ence method to obtain the unknown parameters of
the model. We remark that the procedure applies on
an individual basis.

4.1. Regression Model
As a first step to transform Equation (2) into a regres-
sion model amenable to statistical analysis, we take
the log transformation

ln aij = lnW−1#exp%lnwi − lnwj&$+ )ij! (7)

where )ij = ln eij . We now assume that the deter-
ministic function lnW−1#exp%·&$ can be approximated
through a polynomial in its arguments. This is gener-
ally possible: according to the Weierstrass approxima-
tion theorem, any continuous function on a compact
domain can be approximated to any desired degree
of accuracy by a polynomial in its arguments. Here
we stop at a third-order approximation that yields the
expression

lnW−1#exp%z&$* *0 +*1z+*2z
2 +*3z

3! (8)

with z= lnwi − lnwj . We emphasize that an approxi-
mation to the third order is sufficient to characterize
all the various restrictions discussed in the previous
sections for the AHP.7 In particular, notice that
• the restriction W %1& = 1 (from aii = 1) implies

*0 = 0,
• the fact that W is reciprocally symmetric (from

aji = 1/aij ) implies *2 = 0,

7 More generally, in the statistical approach presented below, the
order of the approximation can be extended to any desired degree
(provided of course that one has enough data to estimate the
model), and then the order of the polynomial can be selected using
various techniques, for example, the statistical theory of model
selection, as in Bernasconi et al. (2008).

• the classical AHP where W is the identity (or
the power model W %p&= pk with k > 0 and W %1&= 1)
restricts *1 = 1 and *3 = 0,
• finally, the case in which *1 = 1 and *3 is left

free to vary corresponds to a (third-order) logarithmic
approximation of the inverse separable model (6) of
§3.1, namely,

lnW−1#exp%z&$* z+*3z
3" (9)

Substituting in Equation (7), we finally obtain the
statistical inference model:

ln aij * %lnwi − lnwj&+*3%lnwi − lnwj&
3 + )ij " (10)

When *3 = 0, model (10) collapses to a well-known
version of Equation (1) of the classical AHP ana-
lyzed with the LLSM by many previous authors
(de Jong 1984, Crawford and Williams 1985, Genest
and Rivest 1994).

4.2. Statistical Analysis
In fact, we now propose a method for conducting the
statistical inference in model (10) that can be viewed
as a generalization of the LLSM method (in partic-
ular, of the analysis of Genest and Rivest 1994). We
derive the estimators +wi and *̂3 minimizing the sum
of squares:8

% +w1! " " " ! +wn! *̂3&
′ = argmin

%w1!"""!wn!*3&

n
∑

i! j=1

)2ij!

where

)ij = ln aij − %lnwi − lnwj&−*3%lnwi − lnwj&
3!

under the constraint that
∑n

i=1 +wi = 1. As in Genest
and Rivest (1994), we assume that the errors )ij for
1≤ i≤ n, 1≤ j < i are independent with common vari-
ance +2. Also recall that )ij =−)ji and )ii = 0. Under
suitable hypotheses it is possible to show that the
estimator % +w1! " " " ! +wn! *̂3&

′ is consistent and asymp-
totically normal when + ↓ 0, but the formulas of its
asymptotic variance depend on the unknown param-
eter + . It is slightly more complicated to find an esti-
mator of +2, but if we define the residuals

)̂ij = ln aij − %ln +wi − ln +wj&− *̂3%ln +wi − ln +wj&
3!

the estimator

++2 = 1
n2 − 3n

·
n
∑

i! j=1

)̂2ij

8 The precise statement of the results of this section and the full
derivation of the asymptotic theory of estimator % +w1! " " " ! +wn! *̂3&

′

are in the online appendix in the e-companion to this paper (which
is available as part of the online version that can be found at
http://mansci.journal.informs.org/).
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is asymptotically unbiased (in the sense that
lim+↓0%Ɛ++2/+2&= 1). The problem is that this estima-
tor is not consistent. Also neither is the LLSM estima-
tor of Genest and Rivest (1994). This is not dramatic: it
implies only that when + ↓ 0 and +2 is replaced with
its estimator ++2, the classical t-tests on coefficients are
t%%n2 − 3n&/2&-distributed (whereas in classical regres-
sion theory they are Gaussian). Tests and confidence
intervals can however be built even if asymptotic the-
ory is nonstandard.

5. The Experiment
In the following, we present a test of the AHP based
on a pure estimation experiment in which partici-
pants were asked to give their estimates of (i) ratios
of distances of pairs of Italian cities from a reference
city, (ii) ratios of probabilities resulting from games of
chance, and (iii) ratios of rainfall in pairs of European
cities.
For the three experiments we presented participants

five items (see Table 1) compared in 10 pairs and
asked them, first, to state for each comparison which
of the two items they thought was dominant in the
relevant experimental dimension (distances, chances,
rainfall), and then to quantify with a number chosen
in the interval of integers from 1 to 9 the relative dom-
inance of the two items: for example, in the compar-
isons of the distances experiment, how many times
the city that they considered more distant from Milan
was, according to them, actually more distant from
Milan than the city they considered less distant.
The three experiments are based on 69 individ-

uals who performed all the experiments in a ran-
dom order. The interval of integers 1–9 was used in
accordance with Saaty’s (1977, 1980) “scale of relative
importance.” Also notice that the integers 1–9 cover
the proportions between the physical stimuli, so that
the design satisfies Saaty’s (1986) homogeneity axiom.
Participants were undergraduate students in eco-

nomics from the University of Insubria in Italy. It

Table 1 Items Compared in the Three Experiments

Distances from Games of chance Rainfall in
Milan (km) (probability) November 2001 (mm)

1. Naples (658 km) Take 1 heart out of a Prague (26 mm)
pack of 52 cards (1/4)

2. Venice (247 km) Take 1 ace out of a pack Athens (53 mm)
of 52 cards (1/13)

3. Rome (491 km) Get at least 3 in a roll of Copenhagen (48 mm)
a 6-sided dice (4/6)

4. Turin (124 km) Get 6 in a roll of a London (54 mm)
6-sided dice (1/6)

5. Palermo (885 km) Get heads in a toss of Rome (127 mm)
a coin (1/2)

Sources. http://www.chemical-ecology.net/java/lat-long.htm for distances,
Fremy and Fremy (2001) for rainfall.

was decided to use a monetary reward as an incen-
tive for subjects to perform the experiment as well as
possible; namely, the payment for each subject was
proportional to a measure of the accuracy of his or her
assessments computed in each experiment according
to the formula

,=
n
∑

i=1

%vi − (wi&
2!

where v= %v1! " " " !vn&
′ is the vector of the normalized

true values in the experiment, and (w = %(w1! " " " ! (wn&
′

is the ME eigenvector computed for the subject.9 In
particular, because when ( and W are linear (and
there are no random errors eij ) the ME eigenvector
delivers unbiased estimates, the method implies that
when there is no bias, the more accurate the subjects
are in their assessments, the higher their payoffs in
the experiments. Obviously, this also means that the
design gives an incentive for subjects to be consistent
with the classical AHP.

5.1. Empirical Estimates
We have estimated the priority vector %w1! " " " !wn&

′

for every individual participating in the three experi-
ments using both the ME eigenvector method and our
theory of polynomial approximation based on the joint
estimation of vector % +w1! " " " ! +wn&

′ and parameter *̂3 to
account for the possible nonlinearity of the subjective
weighting function.10
Figure 1 reports the estimates for w1! " " " !wn: the

first row displays the graphs of the distances exper-
iment; the second row, the graphs of the chances
experiment; the third row, the graphs of the rainfall
experiment. Each graph displays on the x-axis the
weight +wj as obtained by our procedure and on the
y-axis the weight (wj as obtained by the ME method.
The vertical dashed lines in each graph correspond to
the true values. Overall, the graphs show that there
are differences in the precision of the assessments
in the three experiments: perhaps as expected, the

9 The actual payment for each subject, in euros, was given by -=
max.3!25− 100 · %,1 +,3 +,3&/, where ,1, ,2, ,3 are the values of
, computed for each of the three experiments (distances, chances,
rainfall). Thus, each subject was sure to obtain at least three euros
from the experiment. The average payment was about 13 euros per
subject. In the actual instructions, the formula for computing pay-
offs was given and explained in an appendix. The general instruc-
tions explained the experimental task to subjects and said that the
payment in euros was computed according to a formula that gave
them incentives to be as accurate as possible in their assessments.
10 We have also produced estimates using the LLSM proposed by
de Jong (1984), Crawford and Williams (1985), and Genest and
Rivest (1994). The LLSM estimates, not reported for brevity, are
very similar to those obtained by the ME method, confirming pre-
vious results and theoretical expectations (Zahedi 1986, Budescu
et al. 1986, Genest and Rivest 1994).
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Figure 1 Individual Estimates of Priority Weights Obtained by Various Methods
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Note. First row, distances experiment; second row, chances experiment; third row, rainfall experiment.

greater precision is in the chances experiment, fol-
lowed by the distances experiment, and finally by
the rainfall experiment (in which the majority of sub-
jects actually ordered cities in the wrong way, guess-
ing that rainfall in November 2001 was heavier in
Copenhagen, Prague, and London than in Athens
and Rome, whereas the converse was true). The main
interest in the graphs in Figure 1 is that they doc-
ument clear differences in the estimates obtained by
the two methods, because in all the three experi-
ments the weights obtained by the two methods do
not lie around the 45. line (gray in the graphs) and
display significant departures from linearity. More-
over, the differences are systematic in that the dia-
grams document a tendency of the ME method in
comparison to ours to overestimate for most sub-
jects the weights when these are perceived in some
way to be low, and underestimate the weights when
they are somehow perceived to be greater (the cut-
off weight for separating overestimation from under-
estimation is around 0"4, see Figure 1). We also see
that this tendency is fairly robust across all the three
experiments.
The graphs in Figure 2 document the reason for this

systematic distortion. The figure shows the functions
W−1%x& * x · exp.*3 ln

3 x/ estimated for each subject
in the three experiments. In each individual graph,

the gray solid lines represent the identity function,
the black solid lines represent the estimated functions,
and the black dashed lines show the confidence inter-
vals at 95%. The confidence intervals allow us to con-
duct graphically for each subject the test of the null
hypothesis that W is the identity. Out of 69 subjects,
the hypothesis is rejected in 47 cases in the distances
experiment, in 37 cases in the chances experiment,
and in 57 cases in the rainfall experiment.
The individual diagrams also indicate that the great

majority of subjects show a similar pattern of distor-
tions, in the sense that they substantially underesti-
mate the ratios (fitted W−1 below the 45. line). More-
over, a concave shape functionW−1%x& is estimated for
the majority of subjects, indicating that the tendency to
underestimate ratios increases as the ratios get increas-
ingly larger above one. This tendency directly explains
why the ME eigenvector method, which does not
account for the distortions in the subjective weighting
functions, overestimates low weights wj and underes-
timates larger weights wj as seen previously. In this
respect, we also remark that the parameter *̂3 account-
ing for the departure from nonlinearity of the subjec-
tive weighting function has similar estimates in the
three experiments: in particular, the median value of
*̂3 is −0"0321 in the distances experiment, −0"0353 in
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Figure 2 Individual Estimates of the Inverse Subjective Weighting Function W−1
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(a) Inverse subjective weighting functions in the distances experiment
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(b) Inverse subjective weighting functions in the chances experiment
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Figure 2 (Continued)

(c) Inverse subjective weighting functions in the rainfall experiment
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the rainfall experiment, and −0"0271 in the chances
experiment.
The diagrams in Figure 2 also allow us to con-

duct some tests of ordinal consistency. In particu-
lar, recall that if W−1 is not an invertible function,
then the subjects’ ratio assessments violate ordinal
consistency. In our estimation procedure, we have
decided not to impose invertibility. Nevertheless, we
find that only very few subjects violate ordinal con-
sistency: 5 subjects out of 69 in the distances exper-
iment (subjects 21, 34, 60, 61, 69) and 2 subjects in
the rainfall experiment (subjects 55 and 61), whereas
all subjects in the chances experiment satisfy ordinal
consistency.

5.2. The Effects of W and Errors )ij
As emphasized, the nonlinearity of the subjective
weighting function implies that the AHP response
matrix necessarily contains consistency violations. In
this perspective, perhaps the most empirically rele-
vant question for the AHP is whether the inconsisten-
cies due to W (and thus *3) are larger or smaller than
the ones due to the noise eij (or )ij ). To address such
a question, we compare eigenvector (w= %(w1! " " " ! (wn&

′

and eigenvalue '̄ computed from the matrix of the

elicited responses A = #aij $, with the eigenvector-
eigenvalue obtained by first removing from the matrix
the effect of the noise, thus computing w and ' on the
basis of +W−1% +wi/ +wj& (with +W−1 and +w = % +w1! " " " ! +wn&

′

estimated according to our method), and then remov-
ing also the effect of the distortions due to W , thus
computing w and ' directly on the basis of matrix
# +wi/ +wj $.
The results of this decomposition for the distances

experiment are shown in Figure 3. For the other exper-
iments the results are similar. The six subgraphs in
the figure display the empirical cumulative distribu-
tion functions (cdfs) of the 69 values for the five com-
ponents of the maximum eigenvectors obtained from
the different matrices indicated above, followed by the
empirical cdfs of the 69 values of the maximum eigen-
values computed for the various matrices. In partic-
ular, the thin black lines refer to the cdfs of the five
components of the ME eigenvector (w = %(w1! " " " ! (wn&

′

and the ME eigenvalue '̄; the gray curves represent
the empirical cdfs of the 69 values of the correspond-
ing quantities (eigenvector and eigenvalue) com-
puted for each individual on the basis of the matrix
with generic element % +wi/ +wj& · exp.*̂3 · ln3% +wi/ +wj&/ =
aij/êij ; the thick black curves represent the empirical
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Figure 3 Empirical Cumulative Distributions of Eigenvector and Eigenvalue Estimates in the Distances Experiment
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cdfs of the 69 values of the same quantities computed
for each individual on the basis of the matrix with
generic element +wi/ +wj . The dashed vertical lines rep-
resent the ratios based on the true distances.
In the graphs, the differences between the thick-

black and gray curves are apparent, whereas the gray
and the thin black curves are almost indistinguishable.
This indicates that the distortions due to the errors
)ij have a definitively smaller effect on the elicited
responses than the distortions due to W . The implica-
tion is that the errors )ij have only a limited impact
on consistency violations. This is demonstrated by the
last graph for the eigenvalue, which shows that the
gray line computed with the data cleaned by the noise
is only a bit lower than the thin black line for the
ME eigenvalue (recall that perfect consistency holds
when the Perron eigenvalue is 'max = 5), whereas
inconsistencies are completely removed only when
the effect of W is also taken away from the elicited
responses (see the thick black line).

5.3. Discussion
The final objective of the AHP is to obtain the vec-
tor of priority weights %w1! " " " !wn&

′ from the response
data A= #aij $. The previous experiment confirms that

the response matrix may be affected by fundamen-
tal inconsistencies due to the subjective weighting
function W . The results are in line with various
recent experimental tests of separable representations,
including a distance experiment similar to the one
described above, but with quantifications on the con-
tinuous space of real numbers (Bernasconi et al. 2008).
Moreover, in that previous experiment, subjects had
an actual map to locate the cities, so as to exert some
control over inconsistencies due to subjects not know-
ing the true distances between cities and inconsisten-
cies introduced by the assessment procedure.
The AHP can be used both for preference mea-

surement and estimation. The above investigation
refers to estimation experiments. Estimation tasks
are logically simpler than experiments on preference
measurement. The distance experiment, in particu-
lar, reproduces a standard example used by the AHP
to illustrate the force of the measurement method
(Saaty 1977, p. 273). Thus, we see the above estima-
tion experiments as a sort of “gold standard” for a
test of the classical AHP, in the sense that it seems to
us that the evidence that the AHP assessment proce-
dure distorts perception in the context of something
that is easy to measure, like distances, makes it hard
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Figure 4 Priority Weights Corrected with a “Representative” Weighting Function
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Note. First row, distances experiment; second row, chances experiment; third row, rainfall experiment.

to believe that the classical AHP could work better in
the context of something that is difficult to measure,
like preferences.
From a practical perspective, the above analysis

can yield two possible revisions of the classical AHP.
First of all, subjective weighting functions can be
used to provide suggestions to the decision makers
about how to improve the accuracy of their elicited
responses. For example, it is clear that in a repetition
of the present experiments, most participants should
be advised of their tendency to increasingly under-
weight the ratios as the ratios get larger above one
(see again the plots in Figures 2(a)–2(c)).
Alternatively, the estimates +w1! " " " ! +wn obtained by

our statistical procedure could be used directly as the
priority weights of interest. The procedure is, how-
ever, based on subject-specific estimates. The concern
is therefore that the procedure is prone to individual
variability in the sense that one may be concerned
with the stability of subject-specific estimates.11 To
address this issue, we compare in Figure 4 the subject-
specific weights with the weights obtained by a

11 When the quantifications are on the continuous space of real
numbers, there seem indeed to be more differences in the esti-
mated parameters both across subjects and contexts (Bernasconi
et al. 2008).

“representative” agent model applied to correct the
individual assessments prior to estimating the indi-
vidual weights. That is, we derive individual weights
%+(w1! " " " ! +(wn& following the method underlying the
thick black lines in Figure 3, but with a model in
which the parameter *3 has been constrained to take
the median value ˆ̄*3 of the individuals’ estimates.12

The results based on the overall medians of all
three experiments are presented in Figure 4.13 The first
row compares, for the distances experiment, on the
x-axis the weight +wj as obtained through the subject-
specific procedure, and on the y-axis the weight +(wj

as obtained through the “representative” agent proce-
dure; the second row conducts the same comparison
for the chances experiment, and the third row con-
ducts the comparison for the rainfall experiment. The
results show that in all of the three experiments, the

12 The values obtained in this way should be representative of
an “average” weighting function, without being too sensitive to
outliers. Other alternative methods to the median for estimating
a “representative” weighting function (like trimmed means, etc.)
have also been tried, and the results are largely insensitive to these
choices.
13 The analysis using the medians of each individual experiment
obtained very close results.
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weights obtained by the “representative” procedure
are very similar to the ones obtained by the subject-
specific weighting functions because the points in
the graphs lie very near to the 45. line except for
a few exceptions (see also the difference between
these graphs and the graphs in Figure 1 comparing
+wj ’s with the ME estimates (wj ’s). These results give
some confidence on the stability of subject-specific
estimates. They also suggest that a “representative”
weighting function constructed from the median of
the individual estimates could represent a possible
basis from which to obtain more consistent subjective
assessments.14

6. Conclusion
The AHP is a problem-solving technique for estab-
lishing priorities in multivariate environments. It is
based on a method of direct subjective measurement
similar to the classical psychophysical ratio-scaling
approach. Critiques have concerned both the norma-
tive and descriptive status of the AHP (Smith and
von Winterfeldt 2004). In this paper, we have reexam-
ined the descriptive and normative foundations of the
AHP in the light of the modern theory of psycholog-
ical measurement. We have emphasized that, as far
as psychophysical scaling is concerned, several prob-
lems may arise with the AHP assuming a direct cor-
respondence between the number names used in the
instruction of the subjective scaling procedures and
scientific numbers.
In recent years, however, mathematical psychology

has provided various axiomatizations based on differ-
ent psychological primitives that have made explicit
the structural assumptions inherent in representing
direct measurement data. It has been shown how the
key to a rigorous analysis is the subjective weighting
function W %·&, which allows one to pinpoint, on the
basis of normatively justified arguments and descrip-
tively supported hypotheses, between the subjects’
perception of proportions and their underlying scien-
tific ratio-scale representation.
We have proposed a method with which to esti-

mate the priority weights in the AHP that takes
into account the distortions caused by the subjective
weighting function and have conducted an exper-
imental investigation to illustrate the use of the
method. We have found that the distortions due to
the subjective weighting function are general and
fairly robust across estimation experiments, and have
shown that our method can be applied to obtain

14 The idea of correcting judgments elicited from individuals
affected by psychological biases to make them more consistent with
prescriptive principles has been advocated also in other areas of
decision sciences, as, for example, in the measurement of utilities
in the context of risk and uncertainty (Bleichrodt et al. 2001).

greater consistency in the subjects’ ratio assessments.
A caveat is that we have applied and tested the
method in a pure estimation context. A question
remains whether the method can be equally applied
in the case of preference measurement.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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1. Introduction

In the following Electronic appendix we provide the precise derivation of the asymptotic theory

of estimator (ŵ1, . . . , ŵn, β̂3) presented in Section 4 of the paper “The Analytic Hierarchy Process

and the Theory of Measurement”.

2. Model and assumptions

The model is:

aij =
wi

wj
· exp

[

β3 ·

(
ln

wi

wj

)3
]

· expεij

lnaij = lnwi − lnwj +β3 · (lnwi − lnwj)
3 + εij.

We want to obtain estimates of w = (wi, . . . ,wn)′ and β3. In order to do so, we minimize the

following objective function:

Q (w,β3) !

n∑

i"=j=1

ε2
ij =

n∑

i"=j=1

[
lnaij − lnwi + lnwj −β3 · (lnwi − lnwj)

3
]2

. (1)

We will indicate the objective function as Q(σ) in order to stress the dependence on the asymptotic

parameter σ; Q(0) is the objective function when σ = 0, while Q(σ)
0 and Q(0)

0 are the previous

quantities when evaluated at the true parameters w0 and β3,0; it is clear that Q(0)
0 ≡ 0. When

needed, we will write θ = (w,β3) and we will indicate respectively the gradient and the Hessian

with respect to θ with one and two dots.

We make the following assumptions.

Ass. 1 The estimator θ̂ is obtained minimizing the function (1) under the constraint
∑n

i=1 wi = 1.

Ass. 2 Let E0 be the skew-symmetric matrix obtained when w = w0 and β3 = β3,0, with generic

(i, j)−element ε0,ij . Let ε0 = ṽ (E0) be the
((

n2−n
2

)
× 1

)
vector obtained stacking the subdiago-

nal elements of E0; ε0 is such that σ−1ε0
D

−→N

(
0, I(

n2−n
2

)

)
. Asymptotic results are stated for

σ ↓ 0.

Ass. 3 The parameter wi takes its value in the interval [εi,1− εi] for some εi > 0; the parameter

β belongs to a compact interval [βL,βU ]; the weights respect the equality
∑n

i=1 wi = 1. The



Author: AHP and the Theory of Measurement
Article submitted to Management Science; manuscript no. 3

parameter space is Θ = {
∏n

i=1 [εi,1− εi]∩ {
∑n

i=1 wi = 1}} × [βL,βU ]; moreover θ0 ∈ relintΘ =

{
∏n

i=1 (εi,1− εi)∩ {
∑n

i=1 wi = 1}}× (βL,βU).

We remark that the asymptotic parameter is σ and not n. This implies that even if these

results may seem standard, they are not. In particular, normalizations through functions of n are

very important since different normalizations (e.g. by n and by n− 1) do not lead to the same

asymptotic behavior. We also remark that the requirement that wi ∈ [εi,1− εi] is in line with

Axiom 2 of Saaty (1986).

3. Propositions

Consider the indexes 1≤ i, j ≤ n with i > j, and let k = (j − 1) ·n+ i− j(j+1)/2. Then we will need

the
(
(n+1)×

(
n2−n

2

))
matrix Q0 given by:

[Q0](h,k) = 4 · 1i=h ·

(
−

1

w0,i
−

3β0

w0,i
· (lnw0,i − lnw0,j)

2

)

+4 · 1j=h ·

(
1

w0,j
+

3β0

w0,j
· (lnw0,i − lnw0,j)

2

)
,

for 1≤ h≤ n, 1≤ k ≤
(

n2−n
2

)
,

[Q0](n+1,k) = 4 · (lnw0,j − lnw0,i)
3

for 1≤ k ≤
(

n2−n
2

)
.

Matrix Q0 is such that Q̇(σ)
0 = Q0 ·ε0, where ε0 is defined in Ass. 2 (it can be checked that the

k−th element of ε0 is ε0,ij, where k = (j − 1) ·n+ i− j(j+1)/2 and i > j).

The following Proposition shows that consistency and asymptotic normality (when σ2 is

known) hold for this estimator.

Proposition 3.1 Under Ass. 1 and 3, the estimator θ̂ is weakly consistent for θ0 as σ ↓ 0. Under

Ass. 1-3 it has the following asymptotic distribution:

σ−1
(
θ̂−θ0

)
D

−→N
(
0,16 ·Dn (D′

nQ0Q
′
0Dn)

−1
D′

n

)

where Dn is the ((n+1)×n) matrix Dn =

[
−

(
e′

n−1,0
)

In

]
.
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Now we consider the situation in which σ is replaced with an estimator.

Proposition 3.2 Under Ass. 1-3, the estimator:

σ̂2 =
1

n2 − 3n
·

n∑

i!=j=1

ε̂2
ij

is asymptotically unbiased (in the sense that E
σ̂2

σ2 → 1) and has asymptotic distribution:

(
n2 − 3n

2

)
·
σ̂2

σ2
→D χ2

(
n2 − 3n

2

)
.

Consider a full row rank (m× (n+1)) matrix Γ. Then:
(
θ̂−θ0

)′

Γ′
{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}−1

Γ
(
θ̂−θ0

)

16σ̂2m
→D F

(
m,

n2 − 3n

2

)
.

When m = 1, in particular:

Γ
(
θ̂−θ0

)

4σ̂
{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}1/2

→D t

(
n2 − 3n

2

)
.

Consider the residual ε̂ij with i > j. Let ek be the ((n+1)× 1) vector with 1 in the k−th position

and all other components equal to 0. Then the following result holds with k = (j − 1) · n + i −

j (j +1)/2:

ε̂ij

σ̂ ·
√

1− e′
kQ

′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0ek

→D t

(
n2 − 3n

2

)
.

Proof of Proposition 3.1. We start with a result of consistency. When σ = 0, lnaij = lnw0,i −

lnw0,j −β0 · (lnw0,i − lnw0,j)
3; thus when we have

Q(σ) (w,β)−Q(0) (w,β) = 2
n∑

i!=j=1

ε0,ij ·
[
lnw0,i − lnw0,j +β0 · (lnw0,i − lnw0,j)

3
]

−2
n∑

i!=j=1

ε0,ij ·
[
lnwi − lnwj +β · (lnwi − lnwj)

3
]

+
n∑

i!=j=1

ε2
0,ij.

This converges uniformly in probability to 0 under Ass. 3 when σ ↓ 0. Q(0) is continuous on a

compact space and is uniquely minimized at wi = w0,i and β = β0. Therefore Theorem 2.1 in

Newey and McFadden (1994) applies.



Author: AHP and the Theory of Measurement
Article submitted to Management Science; manuscript no. 5

For the asymptotic distribution, we reason in terms of θ̃ =
[
0n×1 In

]
·θ, that is θ without the

first component; remark that θ can be recovered as θ =

[
1

0n×1

]
+

[
−

(
e′

n−1,0
)

In

]
θ̃. Therefore,

the gradient and the Hessian are ∂Q(σ)

∂θ̃
= D′

n ·
∂Q(σ)

∂θ
and ∂2Q(σ)

∂θ̃∂θ̃
′ = D′

n ·
∂2Q(σ)

∂θ∂θ′ ·Dn. An expansion

of the first order conditions ∂Q(σ)

∂θ̃

(̂̃
θ

)
= 0 yields:

∂Q(σ)
0

∂θ̃
+

∂2Q(σ)

∂θ̃∂θ̃
′ (θ#) ·

(̂̃
θ− θ̃0

)
= 0

σ−1
(̂̃
θ− θ̃0

)
= −

(
∂2Q(σ)

∂θ̃∂θ̃
′ (θ#)

)−1

·σ−1 ∂Q(σ)
0

∂θ̃
.

Therefore the distribution of σ−1
(
θ̂−θ0

)
can be obtained as:

σ−1
(
θ̂−θ0

)
=−Dn

(
D′

n ·
∂2Q(σ)

∂θ∂θ
′ (θ#) ·Dn

)−1

D′
n ·σ

−1 ∂Q(σ)
0

∂θ
.

We start from the behavior of the gradient.

The gradient is:

∂Q(σ) (w,β)

∂β
= −2 ·

n∑

i$=j=1

(
lnaij − lnwi + lnwj −β · (lnwi − lnwj)

3
)
· (lnwi − lnwj)

3

∂Q(σ) (w,β)

∂wi
= −4 ·

∑

j∈{1,...,n}\i

(
lnaij − lnwi + lnwj −β · (lnwi − lnwj)

3
)

wi

·
[
1+3β · (lnwi − lnwj)

2
]
.

Now we consider Q̇(σ)
0 :

∂Q(σ) (w0,β0)

∂β
= −2 ·

n∑

i$=j=1

εij,0 · (lnwi,0 − lnwj,0)
3

∂Q(σ) (w0,β0)

∂wi
= −4 ·

∑

j∈{1,...,n}\i

εij,0

wi,0
·
[
1+3β0 · (lnwi,0 − lnwj,0)

2
]
.

The fact that Q̇(σ)
0 = Q0 · ε0 implies that V

(
σ−1Q̇(σ)

0

)
= Q0Q

′
0 and σ−1Q̇(σ)

0 = Q0 · σ−1ε0 →D

N (0,Q0Q
′
0)

The asymptotic Hessian for σ ↓ 0 is:

∂2Q(σ) (w,β,λ)

∂β2
→

∂2Q(0) (w,β,λ)

∂β2
= 2 ·

n∑

i$=j=1

(
ln

wi

wj

)6
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∂2Q(σ) (w,β,λ)

∂w2
i

→
∂2Q(0) (w,β,λ)

∂w2
i

= 4 ·
∑

j∈{1,...,n}\i

1

w2
i

·

(

1+3β ·

(
ln

wi

wj

)2
)2

∂2Q(σ) (w,β,λ)

∂wi∂wj
→

∂2Q(0) (w,β,λ)

∂wi∂wj
=−4 ·

1

wiwj
·

[

1+3β ·

(
ln

wi

wj

)2
]2

∂2Q(σ) (w,β,λ)

∂wi∂β
→

∂2Q(0) (w,β,λ)

∂wi∂β
= 4 ·

∑

j∈{1,...,n}\i

(
ln wi

wj

)3

wi
·

[

1+3β ·

(
ln

wi

wj

)2
]

.

Under Ass. 2 and 3 convergence is uniform. Therefore, we have V

(
Q̇(σ)

0

)
= σ2 ·Q0Q

′
0 = 4σ2 ·

Q̈(0)
0 , that is the variance of the gradient is 4σ2 times the limiting Hessian. Therefore:

σ−1
(
θ̂−θ0

)
= −Dn

(
D′

n ·
∂2Q(σ)

∂θ∂θ
′ (θ") ·Dn

)−1

D′
n ·σ

−1 ∂Q(σ)
0

∂θ

∼ −4 ·Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0 ·
ε0

σ

σ−1
(
θ̂−θ0

)
→D N

(
0,16 ·Dn (D′

nQ0Q
′
0Dn)

−1
D′

n

)
.

Remark that θ0 can be replaced with any consistent estimator such as θ̂.

Proof of Proposition 3.2. Let E be the skew-symmetric matrix with generic (i, j)−element

εij = lnaij − lnwi + lnwj − β · (lnwi − lnwj)
3; consider the

((
n2−n

2

)
× 1

)
vector ε = ṽ (E). An

expansion around ε0 can then be obtained as ε∼ ε0 + ∂ε

∂θ′ · (θ−θ0). Through direct computation,

it is simple to show the equality ∂ε

∂θ′ = 1
4
· Q0, so that through Proposition 3.1 ε̂ ∼ ε0 + ∂ε

∂θ′ ·
(
θ̂−θ0

)
becomes:

ε̂ ∼ ε0 −Q0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0 · ε0

=
{
In(n−1)

2
−Q′

0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0

}
· ε0.

This implies:

V (ε̂)∼ σ2 ·
{
In(n−1)

2
−Q′

0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0

}
.

On the other hand:

n∑

i$=j=1

ε̂2
ij

σ2
=

2ε̂
′
ε̂

σ2
∼ 2 ·

ε′
0

σ
·
{
In(n−1)

2
−Q′

0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0

}
·
ε0

σ
.
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Therefore:

E

(
n∑

i!=j=1

ε̂2
ij

σ2

)

∼ 2 ·Etr
{
In(n−1)

2
−Q′

0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0

}

= n (n− 1)− 2tr
(
Q′

0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0

)

= n2 − 3n.

We consider the estimator:

σ̂2 =
1

n2 − 3n
·

n∑

i!=j=1

ε̂2
ij.

Clearly this estimator is asymptotically unbiased.

The matrix A1 = In(n−1)
2

−Q′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0 is idempotent and has rank equal to

its trace, that is n2−3n
2

. The asymptotic distribution is:

(
n2 − 3n

2

)
·
σ̂2

σ2
=

1

2

n∑

i!=j=1

ε̂2
ij

σ2
∼

ε′
0

σ
·
{
In(n−1)

2
−Q′

0Dn (D′
nQ0Q

′
0Dn)

−1
D′

nQ0

}
·
ε0

σ
→D χ2

(
n2 − 3n

2

)
.

Now we work out the distribution of a vector of linear combinations of the regression parame-

ters. Consider the k combinations σ−1Γ
(
θ̂−θ0

)
of the regression parameters θ̂ represented by

the (m× (n+1)) matrix Γ, of full row rank. Remark that the quadratic form
(

n2−3n
2

)
· σ̂2

σ2 is

asymptotically independent of the linear form σ−1Γ
(
θ̂−θ0

)
.

From:

σ−2
(
θ̂−θ0

)′

Γ′
{

V

[
σ−1 ·Γ

(
θ̂−θ0

)]}−1

Γ
(
θ̂−θ0

)

∼
1

16σ2
·
(
θ̂−θ0

)′

Γ′
{
ΓDn (D′

nQ0Q
′
0Dn)

−1
D′

nΓ
′
}−1

Γ
(
θ̂−θ0

)
→D χ2 (k)

we get:

(
θ̂−θ0

)′

Γ′
{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}−1

Γ
(
θ̂−θ0

)

16σ̂2m

→ D

χ2(m)/m

χ2
(

n2
−3n
2

)

/
(

n2
−3n
2

) = F

(
m,

n2 − 3n

2

)
.
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When m = 1, in particular:

{
ΓDn (D′

nQ0Q
′
0Dn)−1

D′
nΓ

′
}−1/2

Γ
(
θ̂−θ0

)

4σ̂
→D t

(
n2 − 3n

2

)
.

Finally, we develop the distribution of the residuals. Consider ε̂ij = e′
kε̂ where ek is a vector of

zeros with 1 at position k = (j − 1) ·n+ i− j(j+1)/2:

σ−1 · ε̂ij ∼N
(
0,1− e′

kQ
′
0Dn (D′

nQ0Q
′
0Dn)

−1
D′

nQ0ek

)

ε̂ij

σ ·
√

1− e′
kQ

′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0ek

→D N (0,1) .

If we replace σ with σ̂, we get:

ε̂ij

σ̂ ·
√

1− e′
kQ

′
0Dn (D′

nQ0Q
′
0Dn)−1

D′
nQ0ek

→D t

(
n2 − 3n

2

)
.
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