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Abstract

We first establish a general version of the Birkhoff Ergodic Theorem for quasi-integrable extended real-
valued random variables without assuming ergodicity. The key argument involves the Poincaré Recurrence
Theorem. Our extension of the Birkhoff Ergodic Theorem is also shown to hold for asymptotic mean
stationary sequences. This is formulated in terms of necessary and sufficient conditions. In particular, we
examine the case where the probability space is endowed with a metric and we discuss the validity of the
Birkhoff Ergodic Theorem for continuous random variables. The interest of our results is illustrated by
an application to the convergence of statistical transforms, such as the moment generating function or the
characteristic function, to their theoretical counterparts.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

As is well-known, the Birkhoff Ergodic Theorem (BET) is one of the most important and
beautiful results of probability theory. It has found a lot of applications in various areas such as
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dynamical systems, stochastic optimization, statistical mechanics and economics. In its classical
form, it asserts that the Cesaro average of a sequence of real-valued measurements on a system
evolving according to the law of motion T, on the probability space ({2, A, IP), converges to
a function having an explicit form in terms of the original process. The same result can be
restated in terms of random variables, which is a major generalization of the Strong Law of
Large Numbers. The extension of the BET to non-integrable and/or extended real-valued random
variables, especially to random variables taking on the value 400 on a set of positive measure,
is of interest. This is useful when dealing with random variables depending on a parameter, for
example in statistical estimation, in the theory of random sets and in stochastic optimization (see
e.g. [12]). More generally, the extension of the BET to asymptotic mean stationary sequences
(see e.g. [22] or [30]) of possibly non-integrable, extended real-valued random variables appears
as a natural and useful objective. In this framework, it is desirable to derive necessary and
sufficient conditions for the convergence of the Cesaro mean as the sample size tends to infinity.
Although one can find some related results or remarks in the literature, general statements and
proofs seem to be lacking. In fact, some papers present results that rely on a version of the BET
for extended real-valued random variables, but no proof of this theorem is known to the authors.
This point will be discussed in detail in Section 5.

The aim of the present paper is threefold. We first prove a new version of the Birkhoff Ergodic
Theorem for a stationary sequence of quasi-integrable random variables taking their values in R.
Secondly, we extend this result to asymptotically mean stationary (ams) sequences of random
variables in terms of necessary and sufficient conditions. Indeed, we establish that a probability
measure P on a measurable space ({2, .4) is ams with respect to a measurable transformation
T if and only if the BET holds for any extended real-valued quasi-integrable random variable
defined on ({2, A). Moreover, it is shown that this equivalence remains true for particular classes
of random variables, e.g. lower semicontinuous ones (when {2 is assumed to be a metric space). In
particular, the case of continuous random variables is examined and a counterexample shows that
even if the BET holds for all continuous random variables, it may fail for lower semicontinuous
ones. Finally, an application to the theory of statistical transforms is sketched. It shows how
some results of the literature on estimation through statistical transforms can be simplified and
extended using our results.

The paper is organized as follows. The main results are stated in Section 2. First, we present an
extension of the Birkhoff Ergodic Theorem for extended real-valued random variables, without
assuming ergodicity. Section 2 also contains generalizations of this result to the case of asymp-
totic mean stationary sequences. Formulations in terms of necessary and sufficient conditions are
provided, and the special case where {2 is a metric space is examined. Examples and remarks
make more precise the domain of applicability of the results and show connections with related
properties. In Section 3 we show how the results of Section 2 can provide some limit theorems
for statistical transforms to be used for estimation of stochastic processes. The proofs of the main
results are developed in Section 4. Section 5 contains additional comments on the literature and
final remarks.

In the rest of this introduction, we set our notation and terminology, and we compile some
basic facts. Given a probability space ({2, A, P), an .A-measurable transformation T : {2 — {2
is said to be nonsingular if the probability PT ! is absolutely continuous with respect to IP. The
transformation T is said to be measure-preserving if P (T’l A) =P (A) forall A € A. We also
say that T preserves the P-measure. Equivalently, P is said to be stationary with respect to T'.
The sets A € A that satisfy T"'A = A are called invariant sets and constitute a sub-o-field
7 of A. More generally, a random variable X such that X (w) = X (Tw) for all ® € {2 is said
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to be invariant. It is known that X is invariant if and only if it is Z-measurable. The notion of
a P-almost sure invariant set is also useful. The class of these sets constitutes a o-field which
is equal to the P-completion of Z. A measurable and measure-preserving transformation 7 is
said to be ergodic if P(A) = 0 or 1 for all invariant sets A. Equivalently, the sub-o-field Z
reduces to the trivial o-field {2, @} (up to the P-null sets). Another well-known formulation

is also used: a sequence of random variables X1, X», ... is said to be stationary if the random
vectors (X1, ..., X,) and (Xg+1, ..., Xn+k) have the same distribution for all integers n, k > 1.
Any stationary sequence X1, X»,... can almost surely be rewritten using a measurable and

measure-preserving transformation 7" as X; (w) = X (T’ a)) (see e.g. [10, Proposition 6.11]). The
transformation 7 : {2 — (2 on ({2, A, P) is said to be asymptotically mean stationary (ams)
if the sequence L Z?;(l) P (T_/ A) is convergent for all A € A. From the Vitali-Hahn—Saks

n
Theorem, it is known that lim,,— o % Z’};(l) PT~/ is a probability measure that we shall denote
by P* and call the asymptotic mean of P. It is not difficult to see that the transformation 7 is
ams on ({2, A, P) if and only if for each bounded real-valued random variable X the limit

ln—l ]
: _ 1
Jlim ng (T a))
=l

exists for P-almost all w € {2 (see e.g. [30, Theorem 4.10]). In the sequel, when this limit exists,
without assuming that T is stationary, it will be convenient to say that the generalized BET
holds for the random variable X. The random variable X is said to be quasi-integrable in the
sense of Neveu (see [34, p. 40]) if either EX™ or EX ™ is finite, where X = max {X, 0} (resp.
X~ = max {—X, 0}) stands for the positive (resp. the negative) part of X. Given a sub-o-field B
of A, the conditional expectation of X with respect to B3 is denoted by E(X|5) or EB (X). For any
A € A, the (probabilistic) indicator function of A is denoted by 14 and defined by 14(w) = 1 if
w € A, 0 otherwise.

2. Main results

We first present a version of the BET for quasi-integrable extended real-valued random
variables under stationary, but not necessarily ergodic, transformations. The random variables
may even take infinite values on a set of positive measure. As we shall see in the proof (Section 4),
this can be handled by an appropriate application of the Poincaré Recurrence Theorem.

Theorem 1. Let ({2, A) be a measurable space and T : (2 — (2 be a measurable
transformation. Suppose moreover that P is a stationary probability measure with respect to
T on (12, A). Then, for every quasi-integrable extended real-valued random variable X, one has

n—1

1 .
lim — Z X (Tla)) =E(X|T)(w) P-almostsurely
n—oon =

(where both sides can be equal to +00 or —00).

Remark 2. The extensions to finite measure spaces and two-sided sequences are standard. As
for continuous time averages, the reader may consult [30, p. 10] and [26, p. 183, Corollary 10.9].

We now examine the extension of the Birkhoff Ergodic Theorem for quasi-integrable extended
real-valued random variables in the case of ams transformations.
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Theorem 3. Let (12, A) be a measurable space, T : {2 — (2 be a measurable transformation
and X be an extended real-valued random variable defined on ({2, A). In addition, suppose that
P is an ams probability measure with respect to T on (§2, A) with stationary mean P*. Also
assume that X is P*-quasi-integrable. Then, for P (and P*)-almost every w € {2, one has

n—1

Tim_ % ;X (T"w) —E* (X |T) (),

where each side can be equal to 400 or —oo, and where B* (X |I) denotes the conditional
expectation taken on (12, A, P*).

This kind of result can be stated in quite a different form. Gray (see [21, p. 174]) introduces
the following definition: a dynamical system ({2, A, P, T') is said to have the ergodic property
with respect to the measurement X if the BET holds for X. More generally, a dynamical system
is said to have the ergodic property with respect to the class of measurements X if it has the
ergodic property with respect to any X € X. Thus, Theorem 3 shows that an ams dynamical
system ({2, A, P, T) has the ergodic property with respect to the class of P*-quasi-integrable
functions.! The following result presents necessary and sufficient conditions for the generalized
BET to hold.

Theorem 4. Let ({2, A, P) be a probability space and T : (2 — (2 be a P-measurable
transformation. Then the following statements are equivalent.

1. P is an ams probability measure with respect to T on ({2, A).

2. The generalized BET holds for every nonnegative extended real-valued random variable
X, that is lim,,_ oo % Z?;o] X (Tia)) exists for P-almost all w € (2.

3. For every nonnegative P-integrable or P*-integrable real-valued random variable X, the
generalized BET holds.

4. For every bounded real-valued random variable X, the generalized BET holds.

5. For every A € A the generalized BET holds for 1 4.

The following corollary deals with the case where {2 is a Polish space endowed with its Borel
o-field. Recall that a topological space {2 is said to be Polish if it admits an equivalent metric d
making ({2, d) separable and complete (see e.g. [3]).

Corollary 5. Assume that {2 is a Polish space endowed with its Borel o -field A = B({2). Then
the following statements are equivalent.

1. P is an ams probability measure with respect to T on (§2, A).

2. For every open subset G of §2 the generalized BET holds for 1.

3. For every nonnegative lower semicontinuous function X : {) — R the generalized BET
holds.

Remark 6. Obviously, if a necessary and sufficient condition has to be used to verify ams
through testing that the BET holds over a class of functions, it is preferable that the class of
functions be as small as possible. On the other hand, it is important to display the strongest
consequences of the ams property. These two opposite aspects have been taken into account in
the statement of the above two results. Clearly, several other equivalent properties could have
been given as well.

1 However, uniform convergence over classes of measurements can fail (see Nobel [35]).
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Remark 7. Also observe that, when P is ams with respect to T, but 7' does not preserve the
P-measure, the Cesaro limit appearing in Theorem 3 is not necessarily equal to E (X |Z), the
conditional expectation taken on ({2, A, P). More precisely, if X is P*-quasi-integrable, the
Cesaro limit is equal to IE* (X |Z), the conditional expectation taken on ({2, A, P*), but not
necessarily to E (X |Z). For example, consider the set 2 = {0, 1} endowed with the o-field
A= {2, {0}, {1}, 2}, the identity map X : 2 — {2 and the transformation T : 2 — {2 defined
by T (0) =0, T (1) = 0. Thus, the invariant o-field reduces to Z = {{2, @}. Moreover, consider
the probability P on ({2, A) such that P = {pg, p1} with pg > 0 and p; > 0 summing to one.
Clearly, T does not preserve IP. Further, for every integer n > 1 and A € A we have

1 n—1 ) 1 n—1 ]
- IF’(a) e T"A) = —Z]P’(T’w e A)
n 4 n 4

i=0 i=0
and this sequence converges to P (0 € A). Consequently, P* (A) exists and satisfies P* (A) = 1
if 0 € A and P* (A) = 0 otherwise. Hence, we can see that 7' is ams with respect to P and
that the corresponding stationary mean P* is the Dirac measure at 0, denoted by . On the other
hand, for every n > 1 the Cesaro mean

1 n—1 1 n—1
-3 X(Tia))z—E Tiw
n « n «

i=0 i=0

is equal to 0 if @ = 0 and to % if w = 1. Thus, the limit exists and is equal to O for all
w € 2. As to the conditional expectation of X with respect to Z, it is immediately checked
that EX|Z)=EX)=pjand E* (X |Z) =E*(X) =0.

The above results show the relevance of asymptotic mean stationarity to ergodic theory and in
particular to the convergence of Cesaro means. Similar conditions have appeared throughout the
literature, especially in statistics, econometrics and information theory. In these domains, they are
intended to allow for a certain freedom in the behavior of the processes that are to be modeled,
nevertheless retaining the asymptotic properties of stationarity. In information theory, [18,27]
study ams channels, and [22,6,2] derive versions of the Shannon—-McMillan—-Breiman Theorem
for ams processes. In queueing theory, ams processes have proved to be a valuable tool as
shown by [41, pp. 120-121] and [33, p. 424] where several applications and references are
provided. Several alternative definitions of asymptotic stationarity are considered in [42,43], one
of which (called strong asymptotic stationarity in mean; see [42, p. 821]) coincides with ams.
In econometrics, an assumption similar to asymptotic mean stationarity is used in [37, p. 677,
Assumption 5B] and [38, p. 42, Assumption D’]. In economics, Kurz’s theory of rationality is
based on a variation of asymptotic mean stationarity (see [31]).

Remark 8. Clearly, statement 3 of Corollary 5 implies that for every positive continuous
function X : {2 — R the generalized BET holds. This is connected with the concept of Cesaro
summable sequences introduced in [19, pp. 77-78] and [20, Theorem 2, p. 702]. Assume that
V is a Borel subset of some Polish space. A sequence (s;);>; in V is said to generate Cesaro
summable sequences with respect to the probability measure v defined on the Borel subsets of V
if, for every real-valued continuous function f with f v [ ()|v(ds) < 400, one has

1 n
lim —Zf(si)=/ f$)v ). (M
n—-oon = v
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If we take f = X with X : V — V, a Borel measurable function, and s; = Tl w, it follows
from Corollary 5 that (1) is implied by asymptotic mean stationarity, with ergodic mean P* = v.
In other words, this definition entails that the sequence (Tia))l.>1 generates a Cesaro summable
sequence with respect to v.

Remark 9. As already observed, statement 3 of Corollary 5 implies that for every positive con-
tinuous function X : 2 — R the generalized BET holds. However, the following counterexam-
ple shows that the converse implication is not true. By Corollary 3, it suffices to show that, even
if the generalized BET holds for every continuous function, it may fail for some lower semicon-
tinuous function. Consider a sequence (), of reals that converges to some point ws,. We
set 2 = {w, : n € NU {oo}} and we assume that the w,’s are pairwise distinct. We define the
measurable transformation 7' by Tw, = w41 for all n € N and Tws = weo. The probabil-
ity measure [P on (2 is only required to satisfy P ({w,}) > 0 for some n € N. Clearly, for all
w € {2, T"w converges to ws, as n goes to infinity. Consequently, for every continuous function
f defined on (2, one has f (weo) = lim,— o0 f (T"w), which, as is well-known, entails

1 n—1 )
fos) = lim =Y f (T’w).
n—-oon =
Now, consider the function g defined on {2 by g (w) = 0 and foreachn € N

() = 2k ifn = 2F withk e N
1) =10 otherwise.

Clearly, g is lower semicontinuous on {2, but not continuous at ws, Since

g (W) = 0 =liminf g (w,) < limsup g (w,) = +o00.
n—00 n— 00

On the other hand, it is not difficult to check that, for each w € 2 \ {w~}, one has

lnfl ] 1n71 )
1:1}113?;;5:(%) < 1imsup;§g(rw) —2.

n—oo

This shows that the BET does not hold for g.
3. Application: statistical transforms

In this section we show how the previous results can provide some limit theorems for sta-
tistical transforms to be used for estimation of the distribution of stochastic processes (see e.g.
[17,15]). Instead of providing a unified theory, we prefer to focus on two simple examples that
provide an illustration of the power of the results and of the extent to which they simplify the
derivation of limit theorems. In both examples we show the convergence of an empirical statis-
tical transform to a limiting transform computed according to the probability P*. Further com-
ments are contained in the remarks.

The first example concerns the Laplace transform or moment generating function and shows
that the absence of integrability requirements can be useful whenever it is not known whether
integrability holds. Define the Laplace transform of a random vector X € R¥ with probability
Pasm(@) = Ee?X = ka ee,x]P’(dx) for & € RX. Suppose now that we observe a vector
time series {X;},—o_ (r—1) extracted from a stochastic process {X;},;cny and build the empirical
measure Pr on the basis of the observed sequence. We define the empirical Laplace transform
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mr (0) = % Zth_ol e X — ka ee/x]P’T (dx). We show that this function converges to m () =
E*efX = ka e pr (dx), yielding therefore a (pointwise) consistent estimator of m (6). The
following theorem is a version of Theorem 2 in [25] in this special context.

Theorem 10. Suppose {X;};cn is a R¥-valued ams process with stationary mean P* that is also
ergodic. Then mp () — m (0) P and P*-almost surely for any 6 € R.

Remark 11. (i) No integrability requirement is necessary, in the sense that if m () = +oo0,
mr (0) will almost surely diverge to +o0.

(ii) If {X,},c is stationary ergodic, then m (0) = Ee?X. As an example, the result holds for iid
processes and for ergodic Markov chains without any further requirement. This implies that the
result is relevant for estimation of the stationary distribution of ergodic Markov chains.

(iii) Statistical estimation based on the Laplace transform is considered, among other references,
in [17].

Proof. The function e?* is bounded from below by 0 and therefore quasi-integrable. The other
conditions of Theorem 3 are immediately checked. [

On the other hand, our main theorem can also be used to extend the class of stochastic
processes covered by classical limit theorems. Consider for simplicity a scalar time series
{Xt}i=0,...,(r—1) extracted from a stochastic process {X;};cn. As in Section 5 of [16] and in

[15], build the vector X,p = (X,, Xi—1y.un, Xt,p)/. If the process {X;};cn (and the associated
probability measure P) were stationary, we could have defined the poly-characteristic function

(pcf) c? () = Eel?” X7 where E is the average under PP; since this is not the case, we let
P () = E*e? X", We define the empirical pef (or epcf) as ch (0, w) = % ,T;pl el X7 In[15]

a consistency result is provided under ergodicity and strong mixing of {X;},cn (or under the
stricter hypothesis 2.1); remark however that the paper also investigates asymptotic normality
and efficiency and more stringent requirements than asymptotic mean stationarity are required
in these cases. Here we show that, as regards consistency, asymptotic mean stationarity with an
ergodic mean is enough.

Theorem 12. Suppose {X;};cn is a R-valued ams process with stationary mean P* that is also
ergodic. Then c? 0, w) — cP ()P and P*-almost surely for any 0 € RPTL. Moreover the

convergence is uniform for 0 € [T, +T 1P+ for any fixed 0 < T < oo.

Remark 13. (i) The extension to vectorial stochastic processes is straightforward and left to the
reader.

(ii) Also Theorem 10 could be extended to give a limit theorem for the empirical Laplace trans-
form of X7

(iii) This result can be used whenever the observed time series has a transient and the object of in-
terest is its steady state synthesized in the probability P* (see e.g. [39] for an economic example).
Proof. If the original stochastic process {X;},cn is @ms with ergodic mean, then also {X p } t>p
is. As regards e' X | we recall that e X = cos (§'X/) +i - sin (6’ X}). Since the two functions
are bounded, we apply Theorem 3 separately to the real and the imaginary part. The rest of the
proof follows the pattern of that of Theorem 2.1 in [15]. O
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4. Proofs of the main results

The present section contains the proofs of the results stated in Section 2. Given an .A-
measurable transformation 7 : {2 — (2 and a real-valued or extended real-valued random
variable X, the corresponding Cesaro mean is denoted by

lnf] )
Uy (0) = ;ZX(TIQ)) n>1, we .
i=0

For proving Theorem 1, we need the following lemma on the Z-measurability of lim inf,,_, o u,
and limsup,_, ., #, when X is an extended real-valued random variable. It is more precise
than [12, Proposition 3.6], and we include the short proof for the convenience of the reader.

Lemma 14. Let ({2, A) be a measurable space, T : {2 — 2 a measurable transformation,
P a stationary probability measure (with respect to T) on (12, A) and X : 2 — [0, +00] an
A-measurable random variable.

(1) If X is finite valued, then liminf, _, » u, and limsup, _, . u, are Z-measurable.

(1) If X can take on the value 400, the above random variables are ITp-measurable, where Ip
denotes the P-completion of 1.

Proof. As to statement (i), consider the .A-measurable function # = limsup,,_, ., #,. In order to
prove that u is also Z-measurable, let us show that it is invariant, i.e. that u (Tw) = u (w) for all
w € 2. For this purpose, observe that for all n > 1 and for all ® € 2, we can write
@=2 " (o) @)
u w)=——+ —u, (Tw).
n+1 n+ 1 n+ 1 n

The result immediately follows by taking the lim sup on both sides of (2). To prove statement
(ii), consider the .A-measurable subset

Ao ={we 2: X (w) = +o0}.

If P(Ax) = 0, the proof is over. In the case where P (A) > 0, we appeal to the Poincaré
Recurrence Theorem (see e.g. [36, Theorem 3.2, p. 34]) applied to Ax. This result asserts that
P-almost every point of Ay, is recurrent with respect to Ao, that is, for such a point w, there
exists k > 1 such that T*w A or, equivalently, X (Tka)) = +400. Therefore, as soon as
n > k, we have u,4+1 (w) = u, (w) = 400, which in turn implies u (w) = u (Tw) = +oo for
P-almost all @ € {2. This shows the Zp-measurability of u. Similar proofs hold for the inferior
limit. [

Proof of Theorem 1. Since X is quasi-integrable, either E max (X, 0) or E min (X, 0) is finite,
so it suffices to consider the non-integrable part of X, say the positive one. Therefore, we can
restrict our analysis to a positive random variable X. It is enough to establish the following two
inequalities:

lin_1>ioréfu,, (w) > EX|T)(w) P-as. 3)
limsupu, (w) < EX|Z)(w) P-as. 4)

because, according to Lemma 14, the corresponding events are invariant. As to (3), for every
integer m > 1, consider the random variable X,, defined by
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X (w) ifX(w)<m
Xom (@) = {0 otherwise.

Since X, is integrable, the BET implies
1 n—1 ]
liminf u, () = liminf— Y X,, (Tw) =E X, |T) ().
n—o00 n—o0 n =

Letting m — oo and invoking the Monotone Convergence Theorem for conditional expectation
(see e.g. [13, Theorem 10.15]) we get (3). Now, let us prove (4). Since, by Lemma 14, both sides
of (4) are Z-measurable, this inequality is equivalent to

1 n—1 )
/ limsup (=Y X (Ta)) P (dw) < f X (@) P (do) (5)

B n—oo n =0 B
forany B € Z.If [, X (w) P (dw) = 400, then (5) is trivially satisfied. If [, X (w) P (dw) is
finite, then the random variable 15 X is integrable. Since 1p is Z-measurable, it is invariant,
which entails for almost all w € {2

n—1 n—1
/B (lir?ls;p % ; X (Tl@)) P (dw) = /Q <1i£so%p rll ; (15 X) (T’@)) P (dw)

1
- /Q (1}11210%% 12 (15 X) (T’@)) P (dw) .

=0

The second equality follows from the equality between the lim sup and the liminf. Indeed, the
limit of the sequence 1 3"~ (15 X) (T w) exists for almost all @ € 2 (and, by the BET, is

n

equal to E (15 X |Z) (w)). Therefore, Fatou’s Lemma yields

n—1 n—1
/B <1i£s;p % ; X (T’@)) P (dw) < 1}113102% (% ; (15 X) (T‘@)) P (dw). (6)

Now, applying the BET in L'-mean to 1z X shows that the sequence (% Zl":—(} (1p X)) X
n>

converges in L'toE (15 X |7), that is

lim P (dw) = 0.
n—oo N

n—1
%;UBX) (T70) —~E(s X 1T) @)

Since B € Z, this equality implies

n—oo

n—1
lim / lZ(1BX)(Tiw)]I”(dw):/ IE(1BX|Z)(w)IP’(dw)=/X(a))IP’(dw),
nni4 ) B

which, together with (6), entails inequality (4). [

Proof of Theorem 3. We use the same notation as in the previous proof. Since [P is ams with
stationary mean P*, the transformation 7" preserves the P*-measure. Thus, Lemma 14(ii) yields
the Zp~-measurability of liminf,_, o u, and limsup,,_, ., u,. This allows applying the same ar-
guments as in the proof of Theorem 1, replacing [P with P*, and yields the desired result. [
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Proof of Theorem 4. The implication 1 = 2 immediately follows from Theorem 3. Indeed,
every nonnegative random variable is quasi-integrable with respect to any probability measure.
Implication 2 = 3 is trivial since 3 is a special case of 2. To prove implication 3 = 4, simply
observe that any bounded random variable X can be written as X = X' — X~ and that statement
3 applies to X and X~. Implication 4 = 5 is trivial. Finally, implication 5 = 1 is well-
known and follows from Lebesgue’s Dominated Convergence Theorem (see e.g. the proof in [30,
Theorem 4.10]). O

Proof of Corollary 5. By the equivalence 1 < 2 of Theorem 4 and by the fact that a lower
semicontinuous function is Borel measurable, we deduce the implication 1 = 3. Implication
3 = 2 is clear because the indicator function of an open subset is lower semicontinuous. It
remains to prove implication 2 = 1. For this purpose, it is enough to prove that 2 implies
statement 5 of Theorem 4. Thus, consider A € A = 5 ({2) and « > 0. Since every probability
measure on a metric space is regular (see e.g. [9, Theorem 1.1]), there exist a closed set F' and an
openset G suchthat F € A € G and P* (G \ F) < «. At this point, it is convenient to introduce
the notation

1n—1 )
un(a),A)=;Z1A(T’a)) n>1, we 2, Ac A,
i=0

v(w, A) =liminf, ;s uy (w0, A) and w(w, A) =limsup,_, o, un (w, A).

From Lemma 14 we know that v (-, A) and w (-, A) are Zp«-measurable. Moreover, the hypoth-
esis implies that the following two equalities hold P*-almost surely:

E*Ar|Z)(w) = lim u, (w, F) and E*(1517) (w) = lim u, (0, G).
n—oo n—o0

Consequently, one has for P*-almost all w € (2
E*(1r|Z) () 2 v (0, A) < w (0, A) <E*(16]1D)(w).

In turn, this entails
/ (w (@, A) —v (v, A)) P* (dw) < / E*(16 =17 |7) (0) P* (dw)
(0} (0}

=/ (16 —15) @) P* (dw) = P* (G \ F) < a.
(P

Since « is arbitrary this proves that v(w, A) = w(w, A) for P*-almost (and P-almost) all w € {2
and finishes the proof. [

5. Additional comments on the literature

In this final section, we compare the results of Section 2 with already existing ones. The result
in Theorem 1 was briefly mentioned without proof and reference by Arnold [4, p. 539], Korf
and Wets [28, p. 443] and Valadier [44, p. 238]. Recently, the result has been used in the com-
panion paper [12] (see [11] for a sketch of the proof in a special case). Versions of the BET
under weak integrability requirements are given by Halmos [23, p. 32], Loeve [32, Section 34.2],
Krengel [30, p. 15], Breiman [10, p. 116], Valadier [44, pp. 238-239] and Kallenberg [26, The-
orem 10.6]. However, they suffer from some restrictions in their applicability. Indeed, Loeve’s
result is applicable only to real-valued quasi-integrable random variables and to transformations



1918 C. Hess et al. / Stochastic Processes and their Applications 120 (2010) 1908-1919

T respecting the conditions stated on his page 96 (this appears to have been overlooked in sub-
sequent references). The result of Halmos, Krengel, Breiman and Valadier, which is in fact the
same, is restricted to real-valued quasi-integrable random variables for ergodic 7. In the book
by Kallenberg, one can find a version of the BET for quasi-integrable real-valued random vari-
ables for stationary 7', but the random variables are not allowed to take on the value +oc0 on a
set of positive measure. As to the more general case of measure-preserving T for real-valued
quasi-integrable random variables, some results in the literature could be adapted to prove other
versions of the BET, namely the BET for superstationary processes of Krengel [29], the subaddi-
tive ergodic theorems of Abid [1] and [30, p. 38, Theorem 5.4] (see [30, p. 49] for the definition
of superstationarity). Nonetheless, the latter result is not comparable to the BET, because the
superstationarity condition is stronger than stationarity.

As we have seen in Section 2, the BET can be extended to the case where T is only as-
sumed to be ams. Results along this line have been proved by Dowker [14, Theorems IIT and V],
Rechard [40, p. 483] and Loeve [32, Section 34.2], but without explicit reference to ams. On the
other hand, the ams property was explicitly considered by Gray and Kieffer [22] and, more re-
cently, by Becker [7,8]. Dowker’s result holds for invertible nonsingular 7" and bounded random
variables, and that of Rechard is valid for nonsingular 7', but for integrable random variables.
As to Loeve’s result, it suffers from the limitations previously exposed. Gray and Kieffer’s The-
orem 1 in [22] (see also [30, p. 33, Theorem 4.10], [21, p. 217, Theorem 7.2.1]) is valid only
for bounded random variables. Finally, Becker gives necessary and sufficient conditions for a
measure to be ams, among which is an ergodic theorem for integrable functions. In spite of their
diversity, each paper stresses the fact that asymptotic mean stationarity turns out to be a neces-
sary and sufficient condition for the BET in a certain class of random variables. This shows the
relevance of this question which has motivated our results in Section 2.

To conclude, we would like to point out that other classes of problems, different from the ones
of statistical transforms discussed in Section 3, can be addressed with our theorems. In particular,
in a companion paper, we exploit the full force of our results to study the essential intersection
of random sets (see e.g. [24]) with applications to robust optimization (see e.g. [5]).
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