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Abstract We consider scenario approximation of problems given by the optimiza-
tion of a function over a constraint that is too difficult to be handled but can be effi-
ciently approximated by a finite collection of constraints corresponding to alternative
scenarios. The covered programs include min-max games, and semi-infinite, robust
and chance-constrained programming problems. We prove convergence of the so-
lutions of the approximated programs to the given ones, using mainly epigraphical
convergence, a kind of variational convergence that has demonstrated to be a valu-
able tool in optimization problems.

Keywords Mathematical programming · Epigraphical convergence · Scenario
approximation · Sampling

1 Introduction

The paper aims at providing general conditions under which some programming
problems subject to constraints can be approximated by scenario programs. The cov-
ered programming problems include min-max games, and semi-infinite, robust and
chance-constrained programs. All of these problems can be written as the optimiza-
tion of a function under a constraint that is too difficult to be handled. However, it
can be efficiently approximated by a finite collection of constraints corresponding
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to alternative scenarios, which can be either the result of a deterministic approxi-
mation method or the realization of a sequence of random variables. Several recent
papers deal either with the computational complexity of these algorithms or with the
precision of these methods (see, e.g., [1–6]). We address another problem: finding
conditions ensuring convergence of the solutions of the scenario programs to the so-
lution of the original ones, when the number of scenarios increases to infinity. This
is indeed a minimal requirement to be checked before evaluating the complexity and
the accuracy of the method.

In the case of semi-infinite programming, these algorithms are known as dis-
cretization methods or outer approximation methods (see [7] for an introduction to
the topic), and their convergence properties have been investigated in several papers
(see, e.g., [7–10]). However, these convergence results either are stated in an abstract
setting [7, 9] that requires a further verification of the hypotheses, or are focused [8,
10] and can be applied only to specialized (and efficient) algorithms. The results pro-
vided in this paper stand in-between the two approaches, and benefit from the use
of a kind of convergence (epigraphical convergence; see below) more general than
customarily used. At last, the framework we propose is not limited to semi-infinite
programming, and some insight in the conditions ensuring convergence can be gained
from the joint analysis of these situations.

2 Preliminaries

It is important to stress the similarities and the differences of scenario programs with
respect to the sample average approximation scheme used in Stochastic Programming
(see [11] and the references therein). In Stochastic Programming, the objective is the
maximization of an integral functional over a fixed set, and the integral functional
is approximated through an empirical mean functional while the set of constraints is
kept fixed. On the other hand, in the present case, the objective function is known,
while the set has to be approximated (see [4, Sect. 2.1.5]). This allows the use, in
Stochastic Programming, of a large machinery developed in Statistics to deal with
the class of so-called M-estimators (see, e.g., [12]) and leaves Robust Programming
with the open problem of developing methods for the proof of asymptotic properties.

As a result, our theorems show that the solutions of the scenario programs ap-
proach the solutions of the original ones under conditions that appear to be new in the
literature and more technical than in the case of Stochastic Programming. In passing,
we stress why the customary definition of a class of stochastic semi-infinite programs
is unsuitable and we reformulate it (see Eq. (3)).

In order to prove convergence of the solutions of the approximated programs to
the original ones, we use mainly epigraphical convergence, a kind of variational con-
vergence that has demonstrated to be a valuable tool in optimization problems. As
stressed above, our main objective is to show convergence of optimal solutions, and
not to derive feasibility of programming algorithms: therefore, our results will not
involve, as is customary in programming, convexity of sets and functions, but, e.g.,
closedness of sets and semi-continuity of functions. These requirements will often be
a fortiori true under the standard hypotheses, but they allow one to deal with much
more general situations.
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The contents of the paper can be summarized as follows. In Sect. 3, we describe
the programming problems considered in the rest of the paper, namely semi-infinite,
robust and chance-constrained programs. The relative approximation schemes are
dealt with in Sect. 4, while Sect. 5 contains the statements of the main results con-
cerning consistency of the previous scenario approximations. A numerical example
is studied in Sect. 6. Lastly, Sect. 7 concludes, Appendix A contains the proofs of
the results and Appendix B collects the results on epi-convergence, stationary and
ergodic sequences and random sets that are used in the paper.

We end with some notational remarks. Let N and R denote, respectively, the set
of natural and real numbers. In general, small letters (x) stand for variables, capital
letters (X) for random variables, bold letters (X) for abstract spaces, and calligraphic
letters (X ) for σ -algebras (or more general collections of sets, if otherwise specified).
We suppose that the optimization variable x takes its values in the feasible set X ⊆ R

p

and represents the variables on which the individual has a direct control. On the other
hand, y ∈ Y is a variable that cannot be chosen by the individual and that can, in
some cases, be the realization of a random variable (then written as Y ). A sequence
of elements is denoted as (x(i))i=1,...,n = (x(i))i where i is the index of the sequence;
a point set is denoted as {x(i)} (see [13, p. 14] for an explanation of the difference in
Numerical Analysis). The difference is that a (finite) sequence of length n is obtained
selecting the elements from 1 to n of an infinite sequence and is therefore expanded
through the addition of new points; on the other hand, this does not hold for a point
set. The results in the following are stated for sequences since this is the most natural
framework, especially when dealing with stochastic methods. They can be adapted to
cover the case of points sets, as the numerical example in Sect. 6 will show.

3 Description of the Problem

We start from the following min-max game:

min
x∈X

max
y∈Y

g(x, y), (1)

for a function g : X × Y → R. The rationale behind a min-max game is that the
decision maker wants to choose a value of x that minimizes the loss g arising from
his choice in the worst possible scenario, i.e. when his opponent chooses the value y

in order to maximize the loss. It is simple to remark that this can be written as

min
(γ,x)∈R×X

γ, subject to g(x, y) − γ ≤ 0, ∀y ∈ Y.

This is an example of a more general semi-infinite program (see, e.g., [14, 15]):

min
x∈X

h(x), subject to f (x, y) ≤ 0, ∀y ∈ Y. (2)

The link between semi-infinite programs and min-max problems is investigated
in [16]. Apart from the case of min-max games, Eq. (2) often emerges from a ro-
bust feasibility program, when the aim is to find a value of x ∈ X (if it exists) such
that f (x, y) ≤ 0 for any y ∈ Y.
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A stochastic counterpart of a min-max game and of a semi-infinite program is
obtained when y is the realization of a random variable defined on the probability
space (Y, Y ,P). This problem is customarily written in the literature as

min
x∈X

h(x), subject to f (x,Y ) ≤ 0

where Y is a random variable with probability P. Even if intuitively appealing, this
formulation is nevertheless not correct. Without entering the mathematical details
(see [17] for a full derivation), the main problem of this formulation is that it requires
the constraint to hold for any value assumed by Y : however, random variables are only
defined up to the values taken on null sets, so that it is not possible to guarantee that
the constraint is in fact respected on these null sets. To provide a concise and correct
statement of the problem, we introduce the continuous intersection1 (see, e.g., [18,
p. IV-34]) of a random set Γ . Let Γ : y �→ Γ (y) be a random set (see Appendix B),
parameterized by the random element y. Then the continuous intersection of Γ is

Int(Γ ) :=
⋃

N∈N

⋂

y∈supp(P)\N
Γ (y),

where N denotes the set of all null sets of (Y, Y ,P), and supp(P) is the support of
P, that is the smallest closed subset of Y with full P-measure. Therefore, we define a
robust program as

min
x∈X

h(x), for x ∈ Int
({

x ∈ X : f (x,Y ) ≤ 0
})

, (3)

where f : X × Y → R. Indeed, (3) can be equivalently written as the minimization
of h(x) for x ∈ X, such that there exists Nx ∈ Y for which P(Nx) = 0 (i.e. Nx ∈ N )
and f (x, y) ≤ 0 for any y ∈ Y\Nx .

Robust programs arise from Eq. (1), when the choice of the opponent (that is,
y ∈ Y) can be considered a random variable, as is the case when the opponent is
“Nature”. The difference between the two programs (2) and (3) is largely arbitrary
since it is often possible to define a probability measure on Y such that the solu-
tion of (2) almost surely coincides with the solution of (3), as our results will show.
However, they differ since the most natural approximation strategy is different in the
two cases. While both (2) and (3) can be approximated through algorithms based on
deterministic sequences (see Theorem 5.1), random sampling (see Corollary 5.2) is
more suitable for (3).

Another model that can be considered as a stochastic version of (2), is the follow-
ing kind of program, introduced in [19–21] (see also [22], for the relevance of distri-
butional assumption in this framework), and often called a probabilistic or chance-
constrained program, or program with probabilistic or chance-constraints:

min
x∈X

h(x), subject to P
{
(x,Y ) ∈ A

} ≥ α, (4)

1This object is also called essential intersection, but this name is quite misleading since it induces some
confusion with the P-essential intersection.
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where A is a subset of X×Y. It is always possible to write the set A as A := {(x, y) ∈
X × Y : f (x, y) ≤ 0}, thus offering a striking similarity with program (3).2

Remark 3.1 The programs previously exposed admit several extensions. In the fol-
lowing, we show how these generalizations3 can be dealt with in our framework.

(i) Remark that in (2) we could consider without loss of generality a linear cost
function h(x) = cTx, since (2) can be written in the form

min
(γ,x)∈R×X

γ, subject to h(x) − γ ≤ 0 and f (x, y) ≤ 0, ∀y ∈ Y. (5)

Therefore, in the following, we will use this simpler form. In Remark 5.1(iii), the al-
ternative case of a generic function h(·) is also treated; this shows that the assumption
of linearity has an interest in the statement of the theorems since it requires a more
careful analysis of level-boundedness.

(ii) Consider the case in which the constraints of (3) are given by the inequalities
fi(x,Yi) ≤ 0 for i = 1, . . . ,m, where any Yi takes its values in the probability space
(Yi , Yi ,Pi ). We define a new random variable Y = (Y1, . . . , Ym) taking values in
the space Y = ∏m

i=1 Yi endowed with the product σ -algebra (Y = ⊗m
i=1 Yi ) and an

adequate probability measure P (this allows one to consider dependence among the
components of Y , but if the random variables are independent we take P = ⊗m

i=1 Pi ).
Define moreover a projection operator as ei : Y → Yi such that ei(Y ) = Yi . Then
fi(x,Yi) = fi(x, ei(Y )) and this program can be written as in (3) defining f (x,Y ) =
mini=1,...,m fi(x, ei(Y )).

(iii) Still (see [1, 23, 24]) considers generalized semi-infinite programs or semi-
infinite programs with variable index sets, defined by

min
x∈X

h(x), subject to x ∈ {
x ∈ X : f (x, y) ≤ 0,∀y ∈ Y(x)

}
, (6)

where the index sets Y(x) ⊆ R
� are allowed to depend on x ∈ X. Also in this case, the

function f can be substituted with a linear form as in (5); more interesting is the fact
that also the variable index sets can be removed. Define the new functions f �(x, y) =
f (x, y) + χ(y,Y(x)), where χ is the indicator function of convex analysis.4 Then
problem (6) becomes a classical semi-infinite programming problem:

min
x∈X

h(x), subject to f �(x, y) ≤ 0, ∀y ∈ Y.

Clearly, f � inherits the properties of f and Y(·).

2It is enough to take f (x, y) = 1 − 2 · 1{(x, y) ∈ A}, where 1{z ∈ B} is the indicator or characteristic
function, that is the function taking the value 1 if z ∈ B and 0 otherwise.
3Some of them are discussed in [3, pp. 99–100].
4χ is defined as:

χ(x,C) =
{

0, if x ∈ C

+∞, if x /∈ C
, x ∈ X.
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(iv) In [25], the authors consider the case in which (3) is substituted by

min
x∈X

∫

Y
g(x, y)P(dy) for x ∈ Int

({
x ∈ X : f (x,Y ) ≤ 0

})
.

Note that we are using the corrected version of the constraint (see Eq. (3)). In this
case, a double approximation strategy can be used, using some points in Y to ap-
proximate both the function

∫
Y g(x, y)P(dy) and the set Int({x ∈ X : f (y, x) ≤ 0})

(see, e.g., [26] for the theory, and [27] for an application). It is unclear whether it
is better to use the same points in the two tasks or to base the two approximations
on two different sequences. Nevertheless, the convergence of the objective function
can be obtained along the lines, e.g., of [28, 29], and the convergence of the con-
straints follows from the results discussed in the remainder of the paper. Once the
epi-convergence of the objective function and of the constraints are obtained, the re-
sults on epi-convergence of sums in Chap. 6 of [30] can be used.

(v) In (4), it is often possible to introduce several bounds on the probabilities (see
[31]). This kind of programs too can be dealt with adapting the following results.

4 Approximation Schemes

Consider the semi-infinite program (2) (as modified according to Remark 3.1):

min
x∈X

cTx, subject to f (x, y) ≤ 0, ∀y ∈ Y. (7)

It is sensible to approximate it through the discretization approximation:

min
x∈X

cTx, subject to f
(
x, y(i)

) ≤ 0, i = 1, . . . , n,

where the values (y(i))i=1,...,n are chosen in a deterministic way (see, e.g., [7, 32]).
A similar approximation was also proposed in [2–4] to approximate the robust

optimization problem of Eq. (3):

min
x∈X

cTx, for x ∈ Int
({

x ∈ X : f (x,Y ) ≤ 0
})

(8)

through the sample approximation

min
x∈X

cTx, subject to f
(
x, y(i)

) ≤ 0, i = 1, . . . , n,

where the values (y(i))i=1,...,n are now identically and independently sampled ac-
cording to the probability P. The authors call this the scenario program.5

Summing up, we consider the following approximate program:

min
x∈X

cTx, subject to f
(
x, y(i)

) ≤ 0, i = 1, . . . , n, (9)

5This is similar to the program considered in [25].
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where the points (y(i))i=1,...,n may be a sequence of either deterministic or stochastic
points.6 The aim of this paper is to show that, under certain conditions on the sample
(y(i))i=1,...,n and on the program, the solution to (9) converges to the solution of
(7) or (8) as long as n → ∞. Clearly, convergence will be replaced by almost sure
convergence in the stochastic case.

As concerns the chance-constrained program (4), the approximation works as fol-
lows. If we denote by 1{B} the indicator or characteristic function of the set B (i.e.
the function taking the value 1 for x ∈ B and 0 for x /∈ B), the probability in (4) can
be approximated as

P
{
(x,Y ) ∈ A

} = E1
{
(x,Y ) ∈ A

} ∼= 1

n

n∑

i=1

1
{(

x, y(i)
) ∈ A

}

for a sequence of points (y(i))i=1,...,n. Moreover, we suppose that also the value α

appearing in (4) is function of n (the reason for this choice will be clear in the fol-
lowing). Therefore we are led to consider the new program (or better, the class of
programs indexed by the sequence (αn)n):

min
x∈X

h(x), subject to
1

n

n∑

i=1

1
{(

x, y(i)
) ∈ A

} ≥ αn. (10)

Now we introduce some definitions that will be useful in the following (see, e.g.,
[33]).

Definition 4.1 For a function f : R
k → R, we define the effective domain as

domf := {x ∈ R
k : f (x) < ∞}, and the level sets as

lev≤αf := {
x ∈ R

k : f (x) ≤ α
}
,

for any α ∈ R; it is possible to define similarly the sets lev<αf , lev=αf , lev>αf and
lev≥αf . A function f is said to be level-bounded iff, for every α ∈ R, the set lev≤αf

is bounded. A function f is proper iff f (x) < ∞ for at least one x ∈ R
k , and f (x) >

−∞ for all x ∈ R
k ; it is lower semi-continuous (lsc) at x iff lim infx→x f (x) ≥ f (x);

it is lower semi-continuous iff it is lsc at any x ∈ R
k or, equivalently, iff its level sets

lev≤αf are all closed in R
k . The sequence (fn)n∈N is eventually level-bounded iff

there is a level-bounded function g such that eventually (i.e. for any n large enough)
fn ≥ g, or iff the sequence of sets domfn is eventually bounded.

6It would be clearly possible to explicitly consider two different approximating programs, one for the
deterministic and one for the stochastic case. However, the separation between the two programs is quite
artificial. As an example, also for (7) it is possible to define a fictitious probability measure on Y and to
draw random points according to it. Provided the density of the measure is strictly positive, the behavior
of the solutions is described by Corollary 5.2.
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5 Main Results

5.1 Semi-infinite Programming

The following theorem gives conditions under which the solution of (9) converges
to the solution of a limit program that can coincide with the solution of (7). Clearly,
nothing guarantees that the approximate problem (9) has indeed a solution for finite n,
but the theorem yields conditions under which such a solution asymptotically exists.

Theorem 5.1 Let f : X × Y → R ∪ {+∞} be lower semi-continuous in x for any
y ∈ Y, and suppose that the set

⋂
y∈Y{x ∈ X : f (x, y) ≤ 0} is nonempty. Let xn

denote a solution to the program (9); then the cluster points of the sequence (xn)n
belong to the solution set of

min
x∈X

cTx, subject to f (x, y) ≤ 0, ∀y ∈ Y�, (11)

where Y� = {y(i), i ∈ N}, provided that there exists an index n0 such that the set⋂n
i=1{x ∈ X : f (x, y(i)) ≤ 0} is compact for any n ≥ n0.
If (11) has just one solution x, then limn→∞ xn = x.

Remark 5.1 (i) The theorem does not guarantee that the solution of (7) and the limit-
ing solution of (9) coincide. This fact depends on the set Y�, whose choice, apart from
the obvious requirement of denumerability, is entirely left to the researcher. However,
Corollary 5.1 shows that it is convenient to devise algorithms such that Y� is dense
in Y. This requirement is equivalent to the fact that the discretization mesh-size of
(y(i))i=1,...,n converges to 0 as the number of points n increases. The rate of conver-
gence of the solutions of (9) to the solution of (7) as a function of the discretization
mesh-size is investigated in [1].
(ii) The eventual compactness of

⋂n
i=1{x ∈ X : f (x, y(i)) ≤ 0} is only used to prove

the existence of the cluster points and can be avoided if the result is restated as fol-
lows: the cluster points of the sequence (xn)n, provided they exist, belong to the
solution set of (11) where Y� = {y(i), i ∈ N} (see [17] for a proof).
(iii) It is possible to replace cTx with any continuous and proper function h(·). In this
case, the condition on the existence of an n0 such that the set

n⋂

i=1

{
x ∈ X : f (

x, y(i)
) ≤ 0

}

is compact for any n ≥ n0 can be avoided if the function h(·) is also level-bounded.
What is important is that either h(·) is level-bounded or the space over which the min
is taken is eventually bounded.

The following corollary gives a condition under which the solution of (11) coincides
with the solution of (7).
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Corollary 5.1 Let Y be a metric space and let f : X × Y → R ∪ {+∞} be lower
semi-continuous in y for any x ∈ X. Then, if Y� is a dense subset of Y, the following
equality holds:

⋂

y∈Y�

{
x ∈ X : f (x, y) ≤ 0

} =
⋂

y∈Y

{
x ∈ X : f (x, y) ≤ 0

}
,

and the solution of (11) coincides with the solution of (7).

5.2 Robust Programming

The following corollary shows how Theorem 5.1 can be applied when the points
are randomly (but not necessarily independently) drawn according to a probability
distribution P.

Corollary 5.2 Suppose that (y(i))i is the realization of an ergodic and strictly sta-
tionary sequence of points (see Appendix B for definitions) defined on the probability
space (Y, Y ,P). Suppose, moreover, that:

(i) f : X × Y → R ∪ {+∞} is lower semi-continuous in x for P-almost surely any
Y ∈ Y;

(ii) the set {x ∈ X : f (x,Y ) ≤ 0} is nonempty for P-almost surely any Y ∈ Y;
(iii) the random variable D(Y) := d(0, {x ∈ X : f (x,Y ) ≤ 0}) is P-integrable.

Let xn denote the solution to the program (9); then, under the hypotheses of Theorem
5.1, the cluster points of the sequence (xn)n almost surely belong to the solution of

min
x∈X

cTx, for x ∈ Int
({

x ∈ X : f (x, y) ≤ 0
})

. (12)

The value limn→∞ cTxn is almost surely equal to the value of the solution of (8).
Moreover, if (12) has just one solution x, then limn→∞ xn = x P-almost surely.

Remark 5.2 (i) Remark 5.1 (iii) applies also in this context.
(ii) In this corollary, the points (y(i))i are allowed to be the realization of a sta-
tionary ergodic sequence: this can be useful, for example, when the (y(i))i are ob-
tained through the observation of a real world situation (see, e.g., [34], for the case of
chance-constrained programming). The extension to asymptotically mean stationary
sequences (see [35]) is also possible along the lines of [29].
(iii) Remark that, if the probability measure P is discrete, then the equality Int({x ∈
X : f (x, y) ≤ 0}) = ⋂

y∈Y{x ∈ X : f (x, y) ≤ 0} holds true.7

7This can be simply verified using the result of [18] quoted in the proof of Corollary 5.2. Indeed, if (py)

are the probability masses, we have

χ
(
x, Int

{
x ∈ X : f (y, x) ≤ 0

}) =
∑

y∈Y

χ
(
x,

{
x ∈ X : f (y, x) ≤ 0

}) · py

= χ

(
x,

⋂

y∈Y

{
x ∈ X : f (y, x) ≤ 0

})
.
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(iv) Some results concerning the quality of the scenario approximation in the case of
independent and identically distributed points are given in [2–4, 6].

5.3 Chance-Constrained Programming

The following theorem contains a result concerning convergence of optimal solutions
of approximated chance-constrained programs to the optimal solutions of the origi-
nal ones. Statements (a) and (b) essentially correspond to Theorem 4.5 of [36] and
use epi-convergence. As concerns statement (c), the first part is inspired by Proposi-
tion 2.2 in [37] and uses epi-convergence, while in order to derive the second part,
we use uniform convergence. We will need the following definition.

Definition 5.1 A class of sets A is said to be P-Glivenko–Cantelli (see, e.g., [38])
iff:

sup
A∈A

∣∣Pn{Y ∈ A} − P{Y ∈ A}∣∣ −→
n→∞ 0 P-as,

where Pn is an empirical probability based on a sample (Y (i))i from P, i.e. Pn{Y ∈
A} = 1

n

∑n
i=1 1{Y (i) ∈ A}.

Example 5.1 Let P be any probability measure on R
k . Then the class of sets

A = {∏k
i=1(−∞, xi], x = (x1, . . . , xk) ∈ R

k} is P-Glivenko–Cantelli. More general
examples can be found, e.g., in [38, 39].

Theorem 5.2 Suppose that (y(i))i is a sequence of independent and identically dis-
tributed points defined on the probability space (Y, Y ,P), and consider problem (10).
Suppose, moreover, that:

(i) The set A belongs to B(X) ⊗ Y , where B(X) is the Borel σ -algebra of X, and is
such that, for P-almost any realization y of Y , A ∩ (X × {y}) is closed.

(ii) The function h(x) is continuous, proper and level-bounded.
(iii) For P-almost any sequence (y(i))i , there exists an index n0 (depending on the

sequence (y(i))i ) such that the set

{
x ∈ X : 1

n

n∑

i=1

1
{(

x, y(i)
) ∈ A

} ≥ αn

}

is nonempty and compact for any n ≥ n0.
(iv) The set {x ∈ X : P{(x,Y ) ∈ A} ≥ αn} is nonempty.
(v) {A(x), x ∈ X}, where A(x) := {y ∈ Y : (x, y) ∈ A}, is a Glivenko–Cantelli col-

lection of sets.
(vi) The following inclusion holds:

{
x ∈ X : P

{
(x,Y ) ∈ A

} ≥ αn

} ⊆ cl
[{

x ∈ X : P
{
(x,Y ) ∈ A

}
> αn

}]
,

where cl(A) is the closure of the set A.
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(a) Let xn denote a solution to the program (10); then, for any sequence (αn)n respect-
ing hypotheses (i)–(ii)–(iv), the cluster points of the sequence (xn)n are P-almost
surely feasible (but not necessary optimal) solutions of (4). Moreover, for any se-
quence (αn)n respecting hypotheses (i)–(ii)–(iii)–(iv), we have that lim infn h(xn) ≥
h(x) P-almost surely.
(b) Moreover, there exists a sequence (α�

n)n with α�
n ↑ α such that, if this sequence

respects hypotheses (i)–(ii)–(iii)–(iv), then the cluster points of the sequence (xn)n
P-almost surely belong to the solution of (4). If (4) has just one solution x, then
limn→∞ xn = x P-almost surely.
(c) Let xn denote a solution to the program (10) with αn = α. If hypotheses (i)–
(ii)–(iii)–(iv)–(vi) hold, then limn→∞ h(xn) = h(x) P-almost surely. If hypotheses
(i)–(ii)–(iii)–(v)–(vi) hold, the cluster points of the sequence (xn)n P-almost surely
belong to the solution of (4); if (4) has just one solution x, then limn→∞ xn = x

P-almost surely.

Remark 5.3 (i) The Monte Carlo sampling algorithm can be replaced by any other
probability approximation algorithm, provided the approximated probability con-
verges epigraphically (for (a), (b) and the first part of (c)) or uniformly (for the second
part of (c)) to the original one. In particular, results (a), (b) and the first part of (c)
hold under the same hypotheses, if the points (y(i))i come from a strictly stationary
and ergodic sequence.
(ii) Hypothesis (v) requires {A(x), x ∈ X} to be a Glivenko–Cantelli collection of
sets. In the case of a sequence of independent and identically distributed points, this
can be assessed showing that the class of sets respects the conditions in [39, p. 119]
on the entropy, or that the class is a Vapnik–Chervonenkis one (see [40, pp. 827ff.]).
Proposition 2.1 in [37] provides an interesting condition under which hypothesis (v)
holds with explicit reference to chance constraints. In [41], some useful references to
Glivenko–Cantelli results for collections of sets in the case of dependent sequences
are provided. The relation between Vapnik–Chervonenkis dimension and accuracy of
approximation is discussed in [3, Remark 1 in Sect. 2.1] and [4, pp. 28–29].
(iii) Hypothesis (vi) can be interpreted as a continuity condition on the probability
P{(x,Y ) ∈ A} around the value α. Otherwise stated, it requires that, for any point x in
{x ∈ X : P{(x,Y ) ∈ A} ≥ α}, there exists at least a sequence xn in {x ∈ X : P{(x,Y ) ∈
A} > α} converging to x. It is readily seen that this corresponds to the idea underlying
the second part of hypothesis (A) in [37]. Indeed, since usually the location of x is
unknown, one would rather suppose that (vi) holds in order to guarantee that the
second part of their hypothesis (A) holds for any possible choice of x.
(iv) Hypothesis (iii) holds a fortiori if X is compact, as in Theorem 2.2 in [37].
(v) The stability and the accuracy of sampling in chance-constrained programs are
investigated in [5, 37, 42, 43].

6 An Example

An outstanding example of min-max game or semi-infinite program is linear Cheby-
shev approximation. A function φ : Y → R with compact Y ⊂ R

m has to be approxi-
mated by a linear combination πN(d, y) = ∑N

j=1 dj ·γj (y) of functions {γ1, . . . , γN }.
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Fig. 1 Chebyshev minimizers for interior grid

The problem is the following:

min
d∈RN

max
y∈Y

∣∣φ(y) − πN(d, y)
∣∣.

As such, it is a min-max game that can be rewritten as the semi-infinite program:

min
(d,e)∈RN+1

e, subject to ± (
φ(y) − πN(d, y)

) − e ≤ 0, ∀y ∈ Y. (13)

We approximate the problem using a finite collection of constraints, corresponding
to the points {y(1), . . . , y(n)}. See [44] for more information on Chebyshev approxi-
mation and the convergence of its discretizations.

We take N = 4, γ1(y) = 1, γ2(y) = y, γ3(y) = 2y2 − 1 and γ4(y) = 4y3 −
3y, i.e. the first four Chebyshev polynomials, and φ(y) = sin(2πy), defined on
Y = [0,1]. The true coefficients, obtained through computation, are unique and
are d = (−16.2750,27.1599,−16.1702,5.3901) and e = 0.10473. Taking n ∈
{8,12,16,20,24,28}, we have computed the minimizers of program (13) using the
Barrodale and Philips algorithm (see [45]).

In the following numerical results, we consider both the case in which the points
{y(1), . . . , y(n)} are a subset of a sequence (the one covered by our results under the
notation (y(i))i ) and the case in which the n points constitute a point set. Clearly, any
point set can be embedded in an infinite sequence, so that the previous results still
apply. We consider the following cases:

1. Interior grid: It is a point set whose ith point is given by i/(n+1), for i = 1, . . . , n.
This implies that the points 0 and 1 are not included in the set.
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Fig. 2 Chebyshev minimizers for grid with boundary points

2. Grid with boundary points: It is a point set whose ith point is given by
(i − 1)/(n − 1), for i = 1, . . . , n. In this case, the boundary points 0 and 1 are
included.

3. Halton sequence in base 2: It is a sequence of quasi-Monte Carlo points (see [13,
p. 29]). We have chosen the base 2 since it is well known that the uniformity
properties of the Halton sequence deteriorate for larger values of the base (see
[13, Theorem 3.8]).

4. Random sequence: It is a sequence of points drawn according to a uniform distri-
bution in the unit interval. In order to increase the comparability between succes-
sive plots, the points are increasing subsets (from 1 to n for every n) of the same
sequence, and not separate point sets.

The first figures show the function φ(y) − π4(d, y) (in gray) together with the func-
tion φ(y) − π4(dn, y) (in black) and display the couples of values n and en. Figure 1
shows the minimizers in the case of the interior grid. According to [1], we expect that
the rate of convergence is O(n−1). Figure 2 shows the minimizers in the case of the
grid with boundary points. The results of Still yield the rate of convergence O(n−2).
That the rate of convergence is much faster is confirmed by visual inspection, since
almost no departure of the scenario minimizer with respect to the true one is visible
for larger values of n. Figure 3 shows what happens when the points are randomly
selected in the interval. In this case, the rate of convergence along a particular se-
quence is O(maxi minj |xi − xj |): using the theory of uniform spacings (see, e.g.,
[40, Chap. 21]), this is OP( lnn

n
) (Lemma 2.5 in [46]) and Oas(

lnn
n

) (Theorem 5.1
in [46]).
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Fig. 3 Chebyshev minimizers for random sequence

Fig. 4 Convergence rate of the parameters

Figure 4 displays the Euclidean distance between the values that minimize the
scenario program and those that minimize the original program (in our notation:
‖xn − x‖, where xn = (d

′
n, en)

′ and x = (d
′
, e)′) as a function of the number of
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Fig. 5 Convergence rate of the objective function

points n, while Fig. 5 displays the difference of the objective functions (in this case,
|en − e|). The continuous and long dashed lines are respectively obtained in the in-
terior grid case and in the grid with boundary points case, and are in line with the
expected convergence rate (i.e. respectively n−1 and n−2). The oscillations arising in
the second case are only in small part due to the tolerance of the optimization rou-
tine, as can be seen from the fact that they already arise for small values of n. The
short dashed line is obtained when taking the Halton sequence. The particular saw-
tooth profile of the graph is due to the fact this sequence increases inserting regularly
new points among the previous ones: these new points do not always alter the so-
lution of the discretized program. The same sawtooth profile arises also for random
sequences but in this case it is far from regular. At last, the dash-dot lines represent,
starting from below, the mean, the 95 % quantile and the maximum based on 100,000
replications of random sequences. In this case, the rate of convergence appears to be
slightly faster that what the reasoning above would suggest (indeed, it seems to be
n−1, and not n−1 lnn).

7 Concluding Remarks

In this paper, we use epigraphical convergence to provide general conditions under
which some programming problems subject to constraints (in particular min-max
games, and semi-infinite, robust and chance-constrained programs) can be approxi-
mated by scenario programs. We also reformulate the definition of robust program
commonly found in the literature. We illustrate our approach with a numerical exam-
ple about linear Chebyshev approximation seen as a min-max game or a semi-infinite
program.
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Appendix A: Proofs

Proof of Theorem 5.1 In order to show convergence of the solution of (9), we write
in a different way the program. Using the indicator function χ , (9) becomes:

min
x∈X⊆Rp

cTx + χ

(
x,

n⋂

i=1

{
f

(
x, y(i)

) ≤ 0
}
)

. (14)

We set:

Fn(x) := χ

(
x,

n⋂

i=1

{
f

(
x, y(i)

) ≤ 0
}
)

,

F (x) := χ

(
x,

⋂

y∈Y�

{
f (x, y) ≤ 0

})
,

A(y) := {
x ∈ X : f (x, y) ≤ 0

}
.

To ease notation, we define A(y) := {x ∈ X : f (x, y) ≤ 0}. Now, in order to show
that the solution of (9) converges to the solution of (11), we use Theorem 7.33 of [33,
pp. 266–267], reproduced in the Appendix as Theorem B.2. We have to verify the
following hypotheses (see Definition 4.1):

1. (Fn(x) + cTx)n and F(x) + cTx are lower semi-continuous and proper;
2. (Fn(x) + cTx)n is eventually level-bounded;
3. (Fn(x) + cTx)n epi-converges to F(x) + cTx.

(Fn(x)+cTx)n and F(x)+cTx are lower semi-continuous: cTx is continuous; Fn(x)

is lower semi-continuous iff the set
⋂n

i=1 A(y(i)) is closed (Example 1.6 in [30],
p. 10) and this is guaranteed by f being lower semi-continuous in x for any y ∈
Y (Proposition 1.7 in [30, p. 11]). Moreover, these functions are proper as the set⋂

y∈Y A(y) is nonempty, and therefore:

Fn(x) + cTx ≤ F(x) + cTx

≤ χ

(
x,

⋂

y∈Y

A(y)

)
+ cTx �= +∞.

As concerns eventual level-boundedness of the sequence (Fn(x) + cTx)n, since
the function cTx is not level-bounded, we need the sequence of indicator functions
(Fn(x))n to be eventually level-bounded: this is guaranteed by the assumption that
there exists an index n0 such that the set

⋂n
i=1 A(y(i)) is compact for any n ≥ n0.
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As concerns epi-convergence, using Example 6.24(b) in [30, p. 64], we see that
if (Fn(x))n epi-converges to F(x) and it is an increasing sequence, and cTx is
continuous and therefore lower semi-continuous, (Fn(x) + cTx)n epi-converges to
F(x) + cTx: all these conditions are verified apart from the epi-convergence of
(Fn(x))n to F(x) that has still to be proved.

According to Proposition 4.15 in [30, p. 43], epi-convergence of the indicator
functions is equivalent to Painlevé–Kuratowski convergence of the sets. Since the
sequence

⋂n
i=1 A(y(i)) is decreasing, according to Exercise 4.3(b) in [33, p. 111], we

have:

PK − lim
n→∞

n⋂

i=1

A
(
y(i)

) =
⋂

n∈N

n⋂

i=1

A
(
y(i)

) =
⋂

i∈N

A
(
y(i)

)
.

�

Proof of Corollary 5.1 In the proof, we will use the following characterizations of
lower semi-continuity of f and density of Y� in Y. The function f is lower semi-
continuous with respect to y, iff, for x fixed, we have that for every λ ∈ R, the set
Gλ(x) := {y ∈ Y : f (x, y) > λ} is open (see [47, Chap. 2, p. 42]); Y� is dense in Y
iff, for all open subset G of Y, we have G ∩ Y� �= ∅ (see [47, Chap. 2, p. 26]).

As before, define A(y) := {x ∈ X : f (x, y) ≤ 0} and

I :=
⋂

y∈Y

A(y) and I � :=
⋂

y�∈Y�

A
(
y�

)
.

To prove I = I �, we prove first I ⊆ I � and then I � ⊆ I . The first inclusion is trivially
verified since Y� ⊆ Y. Let us now prove that I � ⊆ I by counterposition. Suppose that
there exists an x� such that x� ∈ I � and x� /∈ I . It respectively means that

∀y� ∈ Y�, f
(
x�, y�

) ≤ 0, (15)

and ∃y0 ∈ Y such that f (x�, y0) > 0. By combination of these two conditions, we
get: ∃y0 ∈ Y\Y � such that f (x�, y0) > 0. Since f is lsc with respect to y, the set
G0(x) is open: thus, there exists η = η(y0) > 0 such that, for every y ∈ B(y0, η) (the
ball of radius η centered in y0), y ∈ G0 i.e. f (x, y) > 0. But, since Y� is dense in
Y, there exists some y�

0 ∈ B(y0, η) ∩ Y�. So f (x�, y�
0) > 0, which contradicts (15).

Therefore:

∀y ∈ Y \ Y�, f
(
x�, y

) ≤ 0,

which, together with (15), gives

∀y ∈ Y, f
(
x�, y

) ≤ 0.

Thus, we have x� ∈ I and I � ⊆ I . As a consequence, I = I �. �
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Proof of Corollary 5.2 As in the previous theorem, we just need to show that
(Fn(x))n epi-converges to a certain limit function F(x), i.e. that

n⋂

i=1

{
f

(
x, y(i)

) ≤ 0
}

converges in the sense of Painlevé–Kuratowski to a limit set (Proposition 4.15 in [30,
p. 43]). Using Theorem 2.7 in [28], we see that

⋂n
i=1{f (x, y(i)) ≤ 0} converges in

the sense of Painlevé–Kuratowski to Int({x ∈ X : f (x,Y ) ≤ 0}) under the following
conditions:

(i) The set {f (x, y(i)) ≤ 0} has to be nonempty and closed: nonemptiness is guar-
anteed by the statement of the corollary, and closedness by the fact that f is lower
semi-continuous in x for P-almost surely any y ∈ Y (Proposition 1.7 in [30, p. 17]).

(ii) The random variable D(Y) := d(0, Int({x ∈ X : f (x,Y ) ≤ 0})) is integrable.
Therefore, (Fn(x))n epi-converges P-as to

F(x) = χ
(
x, Int

({
x ∈ X : f (x,Y ) ≤ 0

}))
.

Note that we can use a result of [18, Proposition 21, p. IV-34] to write

F(x) = χ
(
x, Int

{
x ∈ X : f (x,Y ) ≤ 0

})

=
∫

Y
χ

(
x,

{
x ∈ X : f (x, y) ≤ 0

})
P(dy),

and to express (8) as

min
x∈X⊆Rn

cTx +
∫

Y
χ

(
x,

{
x ∈ X : f (x, y) ≤ 0

})
P(dy).

Convergence of the solution can be proved using the same conditions as before (see
the proof of Theorem 5.1): in particular, we have just to check for eventual level-
boundedness of (Fn(x))n, but this is guaranteed by integrability of d(0, {f (x,Y ) ≤
0}). �

Proof of Theorem 5.2 The idea is to write this program, using the properties of the
indicator function χ , as minx∈X⊆Rp a(x), where:

a(x) = h(x) + χ
(
x, lev≤−αE

[−1
{
(x,Y ) ∈ A

}])
.

The approximate solution is given by minx∈X an(x), where:

an(x) = h(x) + χ

(
x, lev≤−α

{
1

n

n∑

i=1

[−1
{(

x, y(i)
) ∈ A

}]
})

.

If we define the empirical probability based on the sequence (y(i))i=1,...,n as Pn(B) =
1
n

∑n
i=1 1(y(i) ∈ B), we have

Pn

{
(x,Y ) ∈ A

} = 1

n

n∑

i=1

1
{(

x, y(i)
) ∈ A

}
.
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(a) Under hypothesis (i), the function −1{(x,Y ) ∈ A} is lower semi-continuous
in x for P-almost any Y ∈ Y and measurable with respect to B(X) ⊗ Y . We can
then apply Corollary 2.4 in [28, p. 70], to prove that, for almost any independent and
identically distributed sequence (y(i))i=1,...,n,

epi − lim
n→∞−Pn

{(
x, y(i)

) ∈ A
} = epi − lim

n→∞
1

n

n∑

i=1

[−1
{(

x, y(i)
) ∈ A

}]

= −P
{
(x,Y ) ∈ A

}
P-as. (16)

Now, define

Sn

(
α,

(
y(i)

)
i

) := lev≤−α

{−Pn

{(
x, y(i)

) ∈ A
}}

,

S(α) := lev≤−α

{−P
{
(x,Y ) ∈ A

}}
,

for α ∈ R. Using the characterization of epi-convergence through level sets (see [48,
result (b) on p. 755]),

PK − lim sup
n→∞

Sn

(
αn,

(
y(i)

)
i

) ⊂ S(α) P-as, (17)

for any (αn)n such that αn → α. Recall that, for a sequence of sets (Cn)n,
PK − lim supn→∞ Cn is the set of all cluster points extracted from the sequence
(Cn)n: this means that if we define a sequence (xn)n through xn ∈ arg minx∈X an(x),
the set of cluster points of (xn)n is included in S(α).

From Proposition 4.15 in [30, p. 43], Eq. (17) means that

epi − lim inf
n→∞ χ

(
x,Sn

(
αn,

(
y(i)

)
i

)) ≥ χ
(
x,S(α)

)
P-as.

From Proposition 6.21 in [30, p. 63], since h(x) is continuous by (ii),

epi − lim inf
n→∞ an(x) = h(x) + epi − lim inf

n→∞ χ
(
x,Sn

(
αn,

(
y(i)

)
i

)) ≥ a(x) P-as.

Proposition 7.29 (a) in [33] yields lim infn an(xn) ≥ a(x) provided (iii) holds, and
from the obvious relations an(xn) = h(xn) and a(x) = h(x), we get the desired result.

(b) From (16), using Proposition 7.7 (b) in [33], we obtain the existence of a se-
quence (α�

n)n with α�
n ↑ α such that

S(α) ⊆ lim inf
n→∞ Sn

(
α�

n,
(
y(i)

)
i

)
P-as.

Therefore we get:

epi − lim inf
n→∞

[
h(x) + χ

(
x,Sn

(
α�

n,
(
y(i)

)
i

))]

= h(x) + epi − lim inf
n→∞ χ

(
x,Sn

(
α�

n,
(
y(i)

)
i

))

= h(x) + χ
(
x,S(α)

)
P-as,
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where the first equality derives from Proposition 6.21 in [30, p. 63], since h(x) is
continuous by (ii), and the second one from the property of the particular sequence
(α�

n)n.
Now, we show convergence of the minimizers. The functions a(x) and an(x) are

lower semi-continuous since, under hypothesis (i), the function 1{(x,Y ) ∈ A} is lower
semi-continuous in x for P-almost any Y ∈ Y. Under hypotheses (ii), (iii) and (iv),
an(x) and a(x) are proper. The sequence (an(x))n is eventually level-bounded, from
(ii) and (iii). Therefore, for the sequence (α�

n)n, Theorem B.2 applies.
(c) Then, we pass to the last part of the theorem. We start from the first state-

ment. In particular, the fact that lim infn h(xn) ≥ h(x) P-almost surely is a conse-
quence of (a) under hypotheses (i)–(ii)–(iii)–(iv) with αn = α. As concerns the fact
that lim supn h(xn) ≤ h(x) P-almost surely, it can be shown to hold following the
proof of Proposition 2.2 in [37] and replacing the fact that G is Carathéodory with
(i), continuity of f with (ii), compactness of X with (iii), the existence of an opti-
mal solution stated in (A) with (iv)–(ii) and the remaining part of (A) with (vi) (see
Remark 5.3 for a comparison of the hypotheses). As concerns the second statement,
we first show that Sn(α, (y(i))i) converges P-almost surely in the Hausdorff metric to
S(α), then we show that this implies epi-convergence of the objective functions and
we close the proof proving convergence of the solutions. Let A(x) be the set defined
in the statement of the theorem. Then we have 1{(x,Y ) ∈ A} = 1{Y ∈ A(x)} and:

sup
x∈X

∣∣Pn

{
(x,Y ) ∈ A

} − P
{
(x,Y ) ∈ A

}∣∣

= sup
x∈X

∣∣Pn

{
Y ∈ A(x)

} − P
{
Y ∈ A(x)

}∣∣ −→
n→∞ 0 P-as.

This holds because of hypothesis (v). On the other hand, Eq. (2.3) in [49] becomes

{
x ∈ X : P

{
Y ∈ A(x)

} ≥ α
} ⊆ cl

[{
x ∈ X : P

{
Y ∈ A(x)

}
> α

}]
,

and this is equivalent to hypothesis (vi). From hypothesis (iii), Sn(α, (y(i))i) P-almost
surely converges in the Hausdorff metric to S(α) by Theorem 2.1 in [49].

On the space of nonempty compact subsets of an Euclidean space, conver-
gence in the Hausdorff metric and Painlevé–Kuratowski convergence of sequences
of sets are equivalent, and both are equivalent to epi-convergence of the indica-
tor functions of the sets (Proposition 4.15 in [30, p. 43]). This means that PK −
limn→∞ Sn(α, (y(i))i) = S(α) P-as is equivalent to:

epi − lim
n→∞χ

(
x,Sn

(
α,

(
y(i)

)
i

)) = χ
(
x,S(α)

)
P-as.

From Proposition 6.21 in [30], since h(x) is continuous by (ii),

epi − lim
n→∞h(x) + χ

(
x,Sn

(
α,

(
y(i)

)
i

)) = h(x) + χ
(
x,S(α)

) = a(x) P-as.

Therefore, we can apply Theorem B.2 that holds since the objective functions
(an(x))n and a(x) are lower semi-continuous, proper and eventually level-bounded
(from (ii) and (iii)), (an(x))n is epi-convergent to a(x) and the space X is compact. �
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Appendix B: Some Mathematical Concepts

B.1 Epi-convergence

Since our main result is based on epi-convergence, we provide a short presentation.
Let h : E → R be a function from the metric space E into the extended reals. Its
epigraph is defined by

Epi(h) := {
(x,λ) ∈ E × R : h(x) ≤ λ

}
.

The hypograph of h, denoted by Hypo(h), is defined by reversing the inequality. Let
(hn)n≥1 (or (hn)n for short) be a sequence of functions from E into R. For any x ∈ E,
we introduce the quantities

epi − lim inf
n→∞ hn(x) := sup

k≥1
lim inf
n→∞ inf

y∈B(x,1/k)
hn(y),

epi − lim sup
n→∞

hn(x) := sup
k≥1

lim sup
n→∞

inf
y∈B(x,1/k)

hn(y),
(18)

where B(x,1/k) denotes the open ball of radius 1/k centered at x. The func-
tion x �→ epi − lim infn→∞ hn(x) (resp. x �→ epi − lim supn→∞ hn(x)) is called
the lower (resp. upper) epi-limit of the sequence (hn)n. These functions are lsc.
If epi − lim infn→∞ hn(x) = epi − lim supn→∞ hn(x), then (hn)n is said to be epi-
convergent at x. If this is true for all x ∈ E, then the sequence (hn)n epi-converges.
Its epi-limit is denoted by epi − limn→∞ hn.

Equalities (18) have a geometric counterpart involving the Painlevé–Kuratowski
convergence of epigraphs on the space of closed sets of E × R (see, e.g., [50] or
[30]). The Painlevé–Kuratowski convergence is defined as follows. Given a sequence
(Cn)n≥1 of sets in E, we define

PK − lim inf
n→∞ Cn := {x ∈ E : x = limxn, xn ∈ Cn, ∀n ≥ 1},

PK − lim sup
n→∞

Cn := {x ∈ E : x = limxi, xi ∈ Cn(i), ∀i ≥ 1},

where (Cn(i))i≥1 is a subsequence of (Cn)n≥1. The subsets PK − lim infn→∞ Cn and
PK − lim supn→∞ Cn are the lower limit and the upper limit of (Cn)n≥1. It is not
difficult to check that they are both closed and that they satisfy PK− lim infn→∞ Cn ⊂
PK − lim supn→∞ Cn. A sequence (Cn)n≥1 is said to converge to C, in the sense of
Painlevé–Kuratowski, if

C = PK − lim inf
n→∞ Cn = PK − lim sup

n→∞
Cn.

This is denoted by C = PK− limn→∞ Cn. As mentioned above, this notion is strongly
connected with epi-convergence: a sequence of functions hn : E → R epi-converges
to h iff the sequence (Epi(hn))n≥1 PK-converges to Epi(h), in E × R.

A characterization of epi-convergence can be given using level sets (see [33,
p. 246]).
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Theorem B.1 Let h : R
d → R and (hn)n be such that hn : R

d → R. Then:

(i) epi − lim infn→∞ hn ≥ h iff

lim sup
n

(lev≤αnhn) ⊆ lev≤αh,

for all sequences αn → α;
(ii) h ≥ epi − lim supn→∞ hn iff

lim inf
n

(lev≤αnhn) ⊇ lev≤αh,

for some sequence αn → α, in which case this sequence can be chosen with
αn ↓ α;

(iii) epi − limn→∞ hn = h if and only if both conditions hold.

B.2 Convergence of Minima

The following result (Theorem 7.33 in [33, pp. 266–267]) plays a fundamental role
in our proofs.

Theorem B.2 Suppose that the sequence (hn)n is eventually level-bounded, and
epi − limn→∞ hn = h with hn and h lower semi-continuous and proper. Then:

infhn → infh

and infh is finite; moreover, there exists n0 such that, for any n ≥ n0, the sets
arg minhn are nonempty and form a bounded sequence with

lim sup
n

(arg minhn) ⊆ arg minh.

Indeed, for any choice of εn ↓ 0 and xn ∈ εn − arg minhn, the sequence (xn)n∈N is
bounded and such that all its cluster points belong to arg minh. If arg minh consists
of a unique point x, one must actually have xn → x.

B.3 Stationarity and Ergodicity

A sequence of random variables (Xi)i=1,... is said to be stationary if the random vec-
tors (X1, . . . ,Xn) and (Xk+1, . . . ,Xn+k) have the same distribution for all integers
n, k ≥ 1. A measurable set B is said to be invariant if

{
(Xi)i=1,... ∈ B

} = {
(Xi)i=k,k+1,... ∈ B

}

for every k ≥ 1. A sequence (Xi)i=1,... is said to be ergodic if, for every invariant set
B ,

P
{
(Xi)i=1,... ∈ B

} ∈ {0,1}.
These properties can be introduced also in a more abstract setting. Given a prob-

ability space (Ω, A,P), an A-measurable transformation T : Ω → Ω is said to be
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measure-preserving if P(T −1A) = P(A) for all A ∈ A. Equivalently, P is said to be
stationary with respect to T . The sets A ∈ A that satisfy T −1A = A are called invari-
ant sets and constitute a sub-σ -field I of A. A measurable and measure-preserving
transformation T is said to be ergodic if P(A) = 0 or 1 for all invariant sets A. Equiv-
alently, the sub-σ -field I reduces to the trivial σ -field {Ω,∅} (up to the P-null sets).
The previous definitions can be recovered remarking that any stationary sequence
(Xi)i=1,... can almost surely be rewritten using a measurable and measure-preserving
transformation T as Xt(ω) = X0(T

tω) (see, e.g., [51, Proposition 6.11]).

B.4 Random Sets

Given a Polish space E, the set of all subsets of E is denoted by 2E . A random set is
a set-valued map Γ : Ω → 2E having some sort of measurability property. Here, we
shall use graph measurability. The graph of Γ is denoted by Gr(Γ ) and defined by

Gr(Γ ) = {
(ω, x) ∈ Ω × E : x ∈ Γ (ω)

}
.

In this framework, Γ is said to be a random set if Gr(Γ ) is a member of the product
σ -field A ⊗ B(E). Then, Γ is said to be graph-measurable.
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