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a b s t r a c t

We study various methods of aggregating individual judgments and individual priorities in group deci-
sion making with the AHP. The focus is on the empirical properties of the various methods, mainly on
the extent to which the various aggregation methods represent an accurate approximation of the priority
vector of interest. We identify five main classes of aggregation procedures which provide identical or very
similar empirical expressions for the vectors of interest. We also propose a method to decompose in the
AHP response matrix distortions due to random errors and perturbations caused by cognitive biases
predicted by the mathematical psychology literature. We test the decomposition with experimental data
and find that perturbations in group decision making caused by cognitive distortions are more important
than those caused by random errors. We propose methods to correct the systematic distortions.

� 2013 Published by Elsevier B.V.

1. Introduction

The Analytic Hierarchy Process (AHP) of Saaty (1977, 1980,
1986) is a technique for establishing priorities in multi-criteria
decision making. It can be applied to both individual and group
decisions. At the individual level, the procedure starts with the
decision maker measuring on a ratio scale the relative dominance
between any pair of items relevant in a decision problem: namely,
for any pair of items i and j from a set of size n, the decision maker
elicits the ratio wi/wj, in terms of underlying priority weights
w = (w1, . . . ,wn)T, with w1 > 0, . . . ,wn > 0. The procedure gives rise
to n(n � 1)/2 subjective ratio assessments, which the AHP conve-
niently stores in a subjective comparison matrix A = [aij]. Various
prioritization procedures can then be used to extract the priority
vector from A. However, due to inconsistencies in the elicitation,
the theoretical vector w cannot be known exactly, but only some
perturbed vector u can be obtained. Therefore, a fundamental
question in the AHP concerns the extent to which the vector u pro-
vided by different prioritization methods represents an accurate
approximation of the vector w of interest.

When applied to group decision making, several additional nor-
mative and behavioral issues arise, which include considerations
about: the nature of the group formation and the relations
between its members, the level of aggregation, the averaging

methods. In general, it should be clear that aggregating decision
makers’ preferences, whether in the form of judgments or priori-
ties, is not the same as aggregating criteria. In Section 2 of the
paper we will review the main important issues arising in the
literature on the AHP-group aggregation and will survey several
methods of aggregation.1

One feature of the aggregating procedures which in our view
still needs further scrutiny concerns the empirical performance
of the various methods. In this paper we are concerned with the
distance that, depending on the aggregation techniques, there is
between the theoretical vector w of interest and its approximation
u. Often, in the AHP, the quality of the approximation u is
assessed on the basis of the consistency of the response matrix A
(see, e.g., Aull-Hyde, Erdogan, & Duke, 2006; Escobar, Aguarón, &
Moreno-Jiménez, 2004; Lin et al., 2008; Moreno-Jiménez, Aguarón,
& Escobar, 2008; Xu, 2000). Our approach complements those
analyses. While near consistency is obviously a desirable norma-
tive property holding in response matrices in which perturbations
are small, the converse is not true and a pairwise comparison ma-
trix may be perfectly consistent, but ‘‘irrelevant and far off the
mark of the true priority vector’’ (Saaty, 2003, p. 86).

In the AHP the whole decision problem is organized in a hierar-
chic structure of objectives, criteria, and subcriteria (see the review
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1 There is indeed a large literature on AHP for group decisions, with classical and
more recent writings, including Aczél and Saaty (1983), Saaty (1989), Dyer and
Forman (1992), Ramanathan and Ganesh (1994), Forman and Peniwati (1998), Van
Den Honert (2001), Escobar and Moreno-Jiménez (2007), Dong, Zhang, Hong, and Xu
(2010). (More references in Section 2.)
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of applications in Vaidya & Kumar, 2006). The process of measure-
ment occurs at each level of the hierarchy generating a specific
comparison matrix relevant for that level. In this paper we concen-
trate the discussion on the single comparison matrix obtained by
AHP group decision techniques irrespectively of the hierarchic
level. Tackling the whole hierarchy is a further challenge at the indi-
vidual and, especially, group level (e.g., Srdjevic & Srdjevic, 2013).

In Section 3 the algebraic expressions of vectors u’s and w’s
obtained for AHP-group decisions by different aggregation tech-
niques are derived and compared theoretically and empirically.
We approach the problem using the theory of matrix differentials
(Magnus & Neudecker, 1999), taking the first-order expansion of
vector u around w. We identify five main classes of aggregation
methods which provide identical expressions for the first-order
expansions of vectors u’s around w’s. The validity of the approxi-
mations is shown by applying the expressions to comparison
matrices obtained in experiments with human subjects.

We analyze more closely the nature of the perturbations affect-
ing the group’s comparisons in Section 4. In classical AHP the error
terms of the comparison matrix A have been typically interpreted
as caused by factors like trembling, rounding, computational mis-
takes, lapses of concentration. As a result, perturbation terms have
generally been treated as stochastically unpredictable white noise
errors (see, e.g., Genest & Rivest, 1994). More recent studies in
mathematical psychology have analyzed theories of subjective ra-
tio judgments belonging to a class of so-called separable represen-
tations (see Luce, 2002, 2004; Narens, 1996, 2002). In these models
people’s ratio judgments, in addition to random errors, are affected
by systematic distortions. These are due to a subjective weighting
function which transforms numerical mathematical ratios into
subjective perceived ratios. The transformation function of separa-
ble representations can be fruitfully applied in the analysis of the
AHP response matrices used for individual decision making (Ber-
nasconi, Choirat, & Seri, 2010, 2011). Here we study the implica-
tions of separable representations for group decision making. We
provide a general method to decompose, in the first-order approx-
imation of the difference (u �w), a stochastic component due to
random errors, and a deterministic component due to the subjec-
tive transformation functions. The decompositions clearly show
that the deterministic components are substantially larger than
the ones due to random noise. Partly this follows from the fact that
while the individual random noises tend to cancel out by the group
averaging procedures, the deterministic components are not ex-
posed to the same effect. We discuss methods to correct systematic
distortions.

In the concluding Section 5, we summarize how our analysis
can contribute to the implementation of AHP in group decision
making.

2. Basic issues in AHP-group aggregation

In this section we review some fundamental issues in AHP-
group aggregation. We start to introduce some notation. For a n-
vector a; �a is the n-vector defined by �a ¼ ½�ai� ¼ a�1

i

� �
; un is a n-vec-

tor composed of ones; In is the (n � n)-identity matrix; Un is a
(n � n)-matrix composed of ones; ei is a vector of zeros with a
one in the ith position. AT is the transpose of the matrix A. A‘ de-
notes the ordinary product of the matrix A by itself, repeated ‘

times. The notations lnA; expA and A�‘ denote the element-wise
application of natural logarithm, exponential and power function
(of degree ‘) to a matrix A.

Pn
j¼1Aj and �n

j¼1Aj respectively denote
the sum and the element-wise product of a series of matrices.

We consider K individuals. We use an apex (k) to indicate any

quantity for the kth individual. As an example, AðkÞ ¼ aðkÞij

h i
is the

pairwise comparison matrix of the kth individual. We say that

the individual comparison matrix AðkÞ ¼ aðkÞij

h i
respects the recipro-

cal symmetry property if aðkÞij ¼ 1=aðkÞji for every i and j. This is an

important requisite for the aðkÞij ’s to be measured on a ratio scale.

In theory, a reciprocally symmetric matrix AðkÞ ¼ aðkÞij

h i
is said to

satisfy the property of cardinal consistency when for any three ra-

tio judgments aðkÞij ; aðkÞil ; aðkÞlj , the following holds: aðkÞij ¼ aðkÞil � a
ðkÞ
lj . In

practice, cardinal consistency is violated by individuals due to er-
rors: these may be due to trembling, rounding and other unpre-
dictable events. Indeed, we do not know of any cardinally
consistent matrix from practice of order 5 or higher. A weaker
requirement less often violated in practice is ordinal consistency,

implying that when aðkÞil > 1 and aðkÞlj > 1 then also aðkÞij > 1.2

Starting with Saaty (1977), a large literature has proposed dif-
ferent consistency indexes to evaluate the quality of the ratio
assessments both for individuals decisions and for group decisions
(important recent contributions in Aull-Hyde et al., 2006; Escobar
et al., 2004; Lin et al., 2008; Moreno-Jiménez et al., 2008). As
however remarked in the Introduction, consistency is a proxy for
the quality of the assessments. This is because while the theoreti-
cal case of no errors always implies full consistency, the converse is
not true. A simple example is a judgment matrix A(k) in which a
decision maker always elicits responses aðkÞij ¼ 1 in all pairwise
comparisons (i, j) and in any context. The resulting judgment ma-
trix is fully consistent, but unlikely to be without errors.

We denote the priority weights in the theoretical case of no er-
rors as w(k). Then, if A(k) is the comparison matrix of individual k,
we define the matrix of errors, called dE(k), through the equality

AðkÞ ¼ wðkÞwðkÞT
� �

� expðdEðkÞÞ or

d EðkÞ ¼ ln½AðkÞ � ðwðkÞwðkÞ;TÞ� ¼ lnAðkÞ þ lnðwðkÞwðkÞ;TÞ;

with dE(k) = 0 corresponding to the case of no deviations. The
vectors of priority weights obtained from A(k) with different priori-
tization methods are denoted as u(k).

When applied to group decision making, techniques are used to
obtain a vector of priority weights valid for the group as a whole. In
this article we are interested in comparing the difference ðu � wÞ,
where u is the group priority vector obtained by the application of
various techniques starting from the individual comparison matri-
ces A(k), and w is the vector that would be obtained by the applica-
tion of the same techniques in the theoretical case dE(k) = 0 for all k.

2.1. Group formation and member weights

A particularly important issue that arises in the AHP when ap-
plied to group decision making concerns how the group is formed
and whether the members of the group are of equal importance. In
many situations it is natural to assume that agents who agree to
act as a group also agree to have equal importance. There are how-
ever also many contexts in which members may be assigned differ-
ent importance. It is then possible to use weights b1, . . . ,bK to
measure the importance of every member of the group (see
Forman & Peniwati, 1998; Ramanathan & Ganesh, 1994; Saaty,
1994). The weights satisfy bk P 0 for every k and

PK
k¼1bk ¼ 1. In

the simplest case, it is bk = K�1 for every k. Consensus on different
weights may be more difficult to achieve. In some situations, there

2 For example, in a test of ordinal consistency conducted with 69 subjects
performing three independent ratio estimation tasks, we observed only 7 violations of
ordinal consistency in the sum of the three experiments, less than 3.5% (see
Bernasconi et al., 2010). Similar positive results are reported in tests of the
monotonicity property, which is the equivalent of ordinal consistency in the context
of ratio production tasks in psychophysics (see, e.g., Augustin & Maier, 2008).
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can be an external source determining the weights or, as is some-
times referred to, a ‘supra decision maker’ (Ramanathan & Ganesh,
1994). When this does not exist, it is in principle possible to use the
AHP to determine the priorities weights for the group members.
The problem is then to decide who should give the judgments to
obtain the member weights. If it is the group itself, the issue is
to determine the member weights for this meta-problem (Forman
& Peniwati, 1998). One possibility is to assume equal member
weights at this upper level problem. An alternative way proposed
by Ramanathan and Ganesh (1994) adopts a methodology in which
each member of the group evaluate the importance of all group
members, including himself or herself.3 A problem of this approach
is that the decision maker can exaggerate her importance if she has
an advantage from doing that. A limit to this tendency could come
from the fact that individuals who are discovered overrating them-
selves, giving biased judgments, or not being really expert, will be
penalized in subsequent decisions by lower weights presumably as-
signed by others.4 Other scholars have proposed approaches in
which members only provide evaluations to some of the other mem-
bers, which typically do not include themselves, with specific tech-
niques proposed to recover member weights from incomplete
pairwise comparisons (Van Den Honert, 2001, and references there-
in). Other techniques can be applied to assign weights to homoge-
neous subgroups (Bolloju, 2001). In any case, we remark that the
analyses which will be developed in this paper apply regardless of
the methods used to weight the different decision makers.

2.2. Levels of aggregation

Following a large literature (Aczél & Saaty, 1983; Bryson, 1996;
Dong et al., 2010; Dyer & Forman, 1992; Forman & Peniwati, 1998;
Ramanathan & Ganesh, 1994; Saaty, 1989; Van Den Honert, 2001;
Van Den Honert & Lootsma, 1997), the aggregation can be per-
formed at two levels: AIJ (aggregation of individual judgments)
consists in the aggregation of the individual comparison matrices
A(k) into one judgment matrix A valid for the group as a whole,
and then in the computation of the group decision vector u from
this matrix; AIP (aggregation of individual priorities) consists in
the computation of the individual weights u(k) from each A(k) first,
and then in obtaining the aggregated vector u from these. Accord-
ing to Forman and Peniwati (1998), the two methods may be seen
to correspond to two different ways of considering the group: in
the first, the group is taken as a sort of new individual, different
from the simple collection of all its members; whereas in the sec-
ond, the group is seen as a collection of independent agents main-
taining their own identities. Others neglect this interpretation and
compare the two methods simply on the basis of the axiomatic jus-
tifications of the procedures of aggregation.

2.3. Procedures of aggregation

Depending on the level chosen for aggregation, different aver-
aging procedures can be used. In the context of the AIJ, the main
aggregation method is the WGM (weighted geometric mean meth-
od) that is based on the computation of the element-wise weighted
geometric mean of the comparison matrices, i.e. of the aggregated

matrix A = [aij] whose generic element is aij ¼
QK

k¼1 aðkÞij

� �bk
, where

bk is the weight for individual k. The use of this method in the con-
text of the AIJ has sometimes been criticized because it violates the
Pareto Principle with respect to individual priorities (e.g., Ramana-
than & Ganesh, 1994). However, according to Forman and Peniwati
(1998), the Pareto Principle with respect to priorities is inapplica-
ble in the context of AIJ precisely because aggregation concerns
judgments, not priorities. On the other hand, when aggregating
judgments, it has been demonstrated that WGM is indeed the only
method which preserves the reciprocally symmetric structure of
the judgment matrices5 and satisfies the Pareto Principle over judg-
ments and the so-called homogeneity condition,6 whereas other pro-
cedures like the arithmetic mean do not (see Aczél & Alsina, 1986;
Aczél & Saaty, 1983; Forman & Peniwati, 1998). In the AIJ in partic-
ular, assignment of different weights bk’s among agents may reflect
different expertise with the purpose of assigning greater weights
to judgments of more expert agents.

In the context of the AIP, the vectors of priorities uðkÞ ¼ uðkÞi

h i
are

first computed and then aggregated. For the AIP both the geometric
and the arithmetic average satisfy the Pareto Principle and can
therefore be used. In particular, for the AIP, the methods based
on the weighted geometric mean considered in the literature are
of two kinds: the normalized weighted geometric mean (NWGM)
is based on the computation of the geometric mean of the eigen-
vectors and on the normalization of the vector, and yields a vector

u whose ith element is given by ui ¼
QK

k¼1 uðkÞi

� �bk
.

Pn
h¼1

QK
k¼1 uðkÞh

� �bk
; the unnormalized weighted geometric mean

method (UWGM) is based on the computation of the geometric
mean of the eigenvectors without normalization (see, e.g., Forman
& Peniwati, 1998), and yields a vector u whose ith element is

ui ¼
QK

k¼1 uðkÞi

� �bk
. The weighted arithmetic mean method (WAM)

is based on the arithmetic mean of the vectors. It yields a vector

u whose ith element is ui ¼
PK

k¼1bkuðkÞi and is guaranteed to be
normalized.

A preference for geometric mean over arithmetic mean meth-
ods is sometimes justified noting that arithmetic methods are typ-
ically relevant when measurements are on an interval scale, while
in the context of AHP measurements occur on a ratio scale and
have precisely the meaning of representing how many more times
an alternative dominates (in terms of preference or judgment) an-
other alternative. In this case, the geometric mean is more suitable
for aggregation since it directly satisfies homogeneity (recent dis-
cussion in, e.g., Escobar & Moreno-Jiménez, 2007).

2.4. Prioritization

Prioritization is the process of computing the priority vector
from the judgment matrix. In the AIP, prioritization applies to
the individual matrices A(k), whereas in the AIJ it applies to the
group matrix A directly.

In either case, the computation of the vectors can be performed
using different methods. The classical one is the maximum eigen-
value (ME). It has been proposed by Saaty in his classical writings
(1977, 1980) and confirmed since then (Saaty, 1990, 2003). In the

AIP, for a generic matrix AðkÞ ¼ aðkÞij

h i
, the maximum eigenvalue

(ME) yields the vector u(k) defined as A(k)u(k) = k(k)u(k) where k(k)

denotes the Perron root (maximum eigenvalue) of A(k) andPn
i¼1uðkÞi ¼ 1. For the theoretical case of a judgment matrix with

3 The method is based on an eigenvector approach which assumes that the
members priority weights for the original decision problem and for the meta-problem
should be the same (see Ramanathan & Ganesh, 1994, p. 257 for details).

4 Obviously, such a system of sanctions can work the better the more possibilities
there are to actually monitor the biases in the decision makers’ judgments in various
contexts. In a subsequent part of the paper we will further comment on the possibility
to evaluate the extent to which a decision maker provides accurate judgments in the
various contexts.

5 An aggregation procedure preserves the reciprocally symmetric structure if the
aggregated matrix A = [aij] is reciprocally symmetric when the individual matrices
A(k) are.

6 The homogeneity condition requires that if all individuals judge a ratio k times as
large as another ratio, then the aggregated judgments should be k times as large.
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no errors, the ME is known to deliver directly u(k) = w(k), with the
maximum eigenvalue being at its minimum k(k) = n. The classical
AHP argument is to use the ME even for the practical cases in
which the matrices A(k)’s contain errors and are therefore not fully
consistent, provided inconsistencies fall within given bounds.
Therefore, the main normative justifications to use the ME lies in
its algebraic properties (Saaty, 2003).

A different prioritization method is the logarithmic least
squares (LLS). It yields a vector u(k) whose ith element is

uðkÞi ¼
Qn

j¼1aij

� �1=n Pn
h¼1

Qn
j¼1ahj

� �1=n
�

. The main characteristic of

this method is that it can be justified on the basis of statistical
properties (classical references in de Jong, 1984; Genest & Rivest,
1994). A variant of LLS studied by Crawford and Williams (1985)
and applied to AHP in group decision making by Escobar et al.
(2004) is the row geometric mean (RGM). It yields a vector u(k)

such that its ith element is given by uðkÞi ¼
Qn

j¼1a
ðkÞ
ij

� �1=n
.

In the AIJ the same prioritization methods can be used to obtain
the group priority vector u from the aggregated matrix A.

3. Comparisons of (u �w) in AHP-group aggregations

One important question regarding the above aggregation proce-
dures which we believe the previous literature has not fully ad-
dressed concerns the difference between the various methods on
empirical grounds. In particular, how much empirical difference
can we expect from the various techniques when applied to actual
data?

3.1. Classes of aggregation methods

To answer the above question we now analyze the algebraic
characteristics of the priority weights u computed according to
the different methods and compare the differences (u �w) ob-
tained under the various methods. The results of the analysis are
summarized in Table 1. We introduce the matrices
W , (diag[w] �w �wT) and W(k)

, (diag[w(k)] �w(k) �w(k),T). We
recall that the matrix of errors of individual k, with respect to

the case of consistency is dEðkÞ ¼ lnAðkÞ þ ln wðkÞwðkÞ;T
� �

. We also

notice that, whatever the method of aggregation, there is no

guarantee that ln½A� ðwwTÞ� is a well-defined matrix of deviations
from consistency (see Lin et al., 2008, p. 675, Eq. (16)).

The first three columns of the table report the three dimensions
of aggregations discussed above, namely the levels of the aggrega-
tion, the averaging procedures for the aggregation, the prioritiza-
tion methods. The formulas for u and w obtained by the various
techniques are shown in columns 3 and 5, respectively. To compare
the formulas it is necessary to consider the different normaliza-
tions employed by the techniques. Most prioritization methods

(ME, LLS) require that the vector is such that
Pn

j¼1wðkÞj ¼ 1; never-
theless, other methods (RGM) require a vector such thatQn

j¼1wðkÞj ¼ 1. This introduces a small difficulty, since w(k) is nor-
malized in different ways according to the method. The table indi-
cates the vector with the same symbol, specifying in each case the
kind of normalization. The same fact happens with w that can be
given by a weighted arithmetic mean of the individual w(k)’s or
by a weighted geometric mean of the same vectors; in the latter
case, it can be normalized through the alternative constraintsPn

j¼1wj ¼ 1 or
Qn

j¼1wj ¼ 1. Also in this case, we use the same sym-
bol, leaving the specification of the kind of vector to the context. A
further problem is that, even if the individual vectors are normal-

ized as
Pn

j¼1wðkÞj ¼ 1 or
Qn

j¼1wðkÞj ¼ 1, some aggregation methods
yield a resulting aggregated vector with no normalization (see be-
low for details).

The analytic derivations of all the expressions in Table 1 are ob-
tained using the theory of matrix differentials (Magnus & Neudec-
ker, 1999) and are given in the online Appendix. We remark that,
up to the first-order, all methods have the same kind of expansion,
since they are given by:

u ’ wþ 1
n

XK

k¼1

bk � BðkÞdEðkÞun; ð1Þ

where the matrix B(k), that is different across methods and can vary
across individuals, is given in Table 1.

Comparing the formulas for u’s and w’s, the table identifies 5
different classes of methods according to the first-order expansion
of the vector u in terms of the matrix dE(k).

Methods of class 1 (AIJ-WGM-ME/LLS, AIP-NGWM-ME/LLS/
RGM) yield a vector u such that uT

n u ¼ 1, and

Table 1
Characteristics of priority weights.

Priorities

Formula of u B(k) Norm. of u Formula of w Norm. of w Norm. of w(k) Class

AIJ WGM ME – W uT
n u ¼ 1 �K

k¼1ðw
ðkÞ Þ�bk

uT
n ��K

k¼1ðw
ðkÞ Þ�bk

� � uT
n w ¼ 1 uT

n wðkÞ ¼ 1 1

LLS – W uT
n u ¼ 1 �K

k¼1ðw
ðkÞ Þ�bk

uT
n ��K

k¼1
ðwðkÞ Þ�bk

� � uT
n w ¼ 1 uT

n wðkÞ ¼ 1 1

RGM �K
k¼1ðuðkÞÞ

�bk diag(w)
Qn

j¼1uj ¼ 1 �K
k¼1ðwðkÞÞ

�bk
Qn

j¼1wj ¼ 1 Qn
j¼1wðkÞj ¼ 1 2

AIP NWGM ME �K
k¼1ðu

ðkÞ Þ�bk

uT
n�K

k¼1
ðuðkÞ Þ�bk

W uT
n u ¼ 1 �K

k¼1ðw
ðkÞ Þ�bk

uT
n ��K

k¼1
ðwðkÞ Þ�bk

� � uT
n w ¼ 1 uT

n wðkÞ ¼ 1 1

LLS �K
k¼1ðu

ðkÞ Þ�bk

uT
n�K

k¼1
ðuðkÞ Þ�bk

W uT
n u ¼ 1 �K

k¼1ðw
ðkÞ Þ�bk

uT
n ��K

k¼1
ðwðkÞ Þ�bk

� � uT
n w ¼ 1 uT

n wðkÞ ¼ 1 1

RGM �K
k¼1ðu

ðkÞ Þ�bk

uT
n�K

k¼1ðu
ðkÞ Þ�bk

W uT
n u ¼ 1 �K

k¼1ðw
ðkÞ Þ�bk

uT
n ��K

k¼1ðw
ðkÞ Þ�bk

� � uT
n w ¼ 1 Qn

j¼1wðkÞj ¼ 1 1

UWGM ME �K
k¼1ðuðkÞÞ

�bk diag(w) �w �w(k),T none �K
k¼1ðwðkÞÞ

�bk none uT
n wðkÞ ¼ 1 3

LLS �K
k¼1ðuðkÞÞ

�bk diag(w) �w �w(k),T none �K
k¼1ðwðkÞÞ

�bk none uT
n wðkÞ ¼ 1 3

RGM �K
k¼1 uðkÞ
� ��bk diag(w)

Qn
j¼1uj ¼ 1 �K

k¼1ðwðkÞÞ
�bk

Qn
j¼1wj ¼ 1 Qn

j¼1wðkÞj ¼ 1 2

WAM ME PK
k¼1bkuðkÞ W(k) uT

n u ¼ 1 PK
k¼1bkwðkÞ uT

n w ¼ 1 uT
n wðkÞ ¼ 1 4

LLS PK
k¼1bkuðkÞ W(k) uT

n u ¼ 1 PK
k¼1bkwðkÞ uT

n w ¼ 1 uT
n wðkÞ ¼ 1 4

RGM PK
k¼1bkuðkÞ diag(w(k)) none PK

k¼1bkwðkÞ none Qn
j¼1wðkÞj ¼ 1 5

M. Bernasconi et al. / European Journal of Operational Research 232 (2014) 584–592 587
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u ’ wþ 1
n

PK
k¼1bk �WdEðkÞun. These methods are insensitive to the

normalization adopted for u(k): this is due to the fact that they
are homogeneous of degree 1 in each vector, so that different
eigenvectors can even be normalized in different ways. As re-
marked above, this is a very appealing property of WGM. More-
over, AIJ-WGM-LLS and AIP-NWGM-LLS/RGM yield exactly the
same priority vector. Clearly, the remarkable result for the models
of this class is that they obtain the same priority vectors regardless
whether the aggregation procedures are applied at the level of
judgments (AIJ) or of priorities (AIP).

The two methods of class 2 (AIJ-WGM-RGM and AIP-UWGM-
RGM) yield exactly the same priorities (see Escobar et al., 2004).
In this case, u is normalized so that

Qn
j¼1uj ¼ 1 and

u ’ wþ 1
n

PK
k¼1bk � diag wð Þ � dEðkÞun.

Methods of class 3 (AIP-UWGM-ME/LLS) yield the formula

u ’ wþ 1
n

PK
k¼1bk � diag wð Þ �w �wðkÞ;T

� �
� dEðkÞun. Unfortunately,

the priority vector so obtained is not normalized.
Methods of class 4 (AIP-WAM-ME/LLS) yield a vector u normal-

ized as uT
n u ¼ 1, with expansion u ’ wþ 1

n

PK
k¼1bk �WðkÞ � dEðkÞun.

The only method of class 5 (AIP-WAM-RGM) yields

u ’ wþ 1
n

PK
k¼1bk � diagðwðkÞÞ � dEðkÞun. The problem of this aggrega-

tion method is that the eigenvector is not normalized in any way.

3.2. Empirical computations

In Table 2, we compute the vectors of priority weights aggre-
gated according to the different methods for three experiments de-
scribed in Bernasconi et al. (2010). In the experiments, 69
individuals were asked to elicit individual comparison matrices
in three domains respectively concerning 5 probabilities from
games of chances, 5 distances of Italian cities from Milan, and
the rainfalls in 5 European cities.7 The computations in the table
aggregate individual judgments or individual priorities, depending
on the method, over the 69 individuals using equal weights. The
results of the computations confirm the validity of the approach
and of the classification discussed above. Consistently with the alge-
braic expressions derived in Table 1, we find that the differences
between the methods belonging to each of the 5 classes are very
small, namely 0 up to the third decimal in all the three experiments;
while they are larger between methods of different classes. It is
worthwhile to remark that the finding is independent of the size
of the group, since the group size n is not an asymptotic parameter
for any class.

Table 2
Aggregations of priority weights by different methods.

Methods Weights Class

(a) Chances experiment
AIJ WGM ME 0.13579354 0.04955144 0.44610785 0.08617203 0.28237514 1

LLS 0.13553307 0.04975188 0.44674197 0.08740280 0.28057028 1
RGM 0.9085515 0.3335138 2.9947533 0.5859083 1.8808145 2

AIP NWGM ME 0.13542866 0.04855110 0.44577453 0.08675934 0.28348636 1
LLS 0.13553307 0.04975188 0.44674197 0.08740280 0.28057028 1
RGM 0.13553307 0.04975188 0.44674197 0.08740280 0.28057028 1

UWGM ME 0.12688924 0.04548973 0.41766634 0.08128876 0.26561121 3
LLS 0.12703102 0.04663093 0.41871767 0.08191999 0.26296999 3
RGM 0.9085515 0.3335138 2.9947533 0.5859083 1.8808145 2

WAM ME 0.14088845 0.05057028 0.43650269 0.09161485 0.28042373 4
LLS 0.14072004 0.05222758 0.43764566 0.09114555 0.27826117 4
RGM 0.9871902 0.3640906 3.1903676 0.6399945 2.0140510 5

(b) Distances experiment
AIJ WGM ME 0.25623855 0.45062333 0.16563406 0.05025878 0.07724528 1

LLS 0.25798675 0.44838493 0.16582196 0.05014743 0.07765893 1
RGM 1.7255649 2.9990583 1.1091133 0.3354151 0.5194280 2

AIP NWGM ME 0.25859236 0.44989872 0.16458325 0.05010357 0.07682210 1
LLS 0.25798675 0.44838493 0.16582196 0.05014743 0.07765893 1
RGM 0.25798675 0.44838493 0.16582196 0.05014743 0.07765893 1

UWGM ME 0.25132578 0.43725633 0.15995837 0.04869563 0.07466336 3
LLS 0.25101157 0.43626196 0.16133863 0.04879159 0.07555927 3
RGM 1.7255649 2.9990583 1.1091133 0.3354151 0.5194280 2

WAM ME 0.25371327 0.44514466 0.16635863 0.05295901 0.08182443 4
LLS 0.25379045 0.44391684 0.16718922 0.05277836 0.08232513 4
RGM 1.7616022 3.1411006 1.1353818 0.3501750 0.5459828 5

(c) Rainfalls experiment
AIJ WGM ME 0.05764504 0.22923164 0.44891332 0.17619264 0.08801735 1

LLS 0.05756653 0.22998892 0.44788431 0.17623212 0.08832813 1
RGM 0.3690836 1.4745569 2.8715770 1.1298991 0.5663092 2

AIP NWGM ME 0.05758913 0.22966776 0.44501392 0.17920920 0.08851999 1
LLS 0.05756653 0.22998892 0.44788431 0.17623212 0.08832813 1
RGM 0.05756653 0.22998892 0.44788431 0.17623212 0.08832813 1

UWGM ME 0.05341867 0.21303581 0.41278716 0.16623133 0.08210960 3
LLS 0.05334509 0.21312346 0.41504023 0.16330873 0.08185089 3
RGM 0.3690836 1.4745569 2.8715770 1.1298991 0.5663092 2

WAM ME 0.05973668 0.23167645 0.42525063 0.18546677 0.09786947 4
LLS 0.05950081 0.23215688 0.42752466 0.18299506 0.09782259 4
RGM 0.3982207 1.6170153 3.0168890 1.2651230 0.6623847 5

7 The instructions and the full data set of the experiments are available from the
authors.
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We also observe that since the methods differ only in the sec-
ond and higher orders, the results indirectly support the validity
of the first-order approximation.

3.3. Discussion and implications

The classification in Table 1 and the empirical computations in
Table 2 put also some order on the issues discussed in Section 2.
First of all, although the analysis identifies five main classes of
methods, two of them (classes 3 and 5) imply that the priority vec-
tors obtained are not normalized and are therefore unsuitable for
actual implementation. Methods in class 2 are characterized by
the use of the RGM as prioritization procedure (when applied in
combination with AIJ/WGM and AIP/UWGM). It is quite interesting
that, even if this method is often considered similar to LLS, the two
can produce results that are more different than those obtained
under LLS and ME. On the contrary, notwithstanding the disputes
between the latter two methods often encountered in the litera-
ture, it is remarkable that on the empirical ground ME and LLS gen-
erate virtually identical priorities when applied in all aggregating
procedures. Overall, the analysis of this section can be viewed to
speak moderately in favor of models of class 1. In addition to the
interesting properties listed above, including the equivalence of
the priority vectors obtained under AIP and AIJ, the use of the
WGM as averaging procedure for the models of this class can be
supported over (for example) models of class 4, on the basis of
the normative argument outlined in Section 2, namely that the
geometric mean fits better than the arithmetic mean the notion
of ratio scale measures underlying both judgments and priorities.

4. Decomposition of (u �w) in group aggregation methods: the
effect of systematic distortions

What does it cause the departure of u from its true value w?
Classical AHP has not generally spent much attention to discuss
the nature of the perturbations and has generally assumed that
they are due to random errors (see, e.g., de Jong, 1984; Genest &
Rivest, 1994). In recent years, studies in mathematical psychology
have focussed on systematic distortions occurring in ratio estima-
tions, which can be formalized in so-called separable forms (Luce,
2002, 2004; Narens, 1996, 2002).

4.1. Separable representations

Following the literature on separable forms, from now on we
assume that the elicited ratios in the AHP are generated according
to the following model8:

aij ¼W�1 wðxiÞ
wðxjÞ

	 

� eij; ð2Þ

where the functions w and W are respectively called psychophysical
and subjective weighting function, W�1(�) is the inverse of W(�),
w(x1), . . . ,w(xn) are the psychological perceptions of the stimuli
intensities corresponding to the priority weights wi ¼ wðxiÞP

j
wðxjÞ

(for

i = 1, . . . ,n); and where the eij’s are the more classical multiplicative
random error terms introduced by the AHP. The functions w and W
indicate that two independent transformations may occur in a ratio
estimation: one of the stimuli intensities (embodied in w), and the
other of numbers (entailed in W). Support for separable forms has
been found in a series of recent experiments which have been con-
ducted to test some of their underlying properties and which have
estimated different functional specifications of w and W (see,

among others, Bernasconi, Choirat, & Seri, 2008; Ellermeier & Faul-
hammer, 2000; Steingrimsson & Luce, 2005a, 2005b, 2006, 2007;
Zimmer, 2005). Specifically relevant are the distortions caused by
W, which are interpreted as cognitive ones. In fact, findings have
shown that systematic distortions of numbers (actually, ratios)
due to W follow a very intuitive pattern: namely, people tend to
overestimate low ratios and underestimate high ratios, with the
tendency to underestimate increasing as the ratios get increasingly
larger than one.

4.2. Deterministic distortions in (u �w)

Here we study the effect of deterministic distortions due to the
subjective weighting function W in group aggregation methods.
We set eij = exp(mij), where mij = �mji and the mij’s are independent
and identically distributed random variables with EðmijÞ ¼ 0 and
VðmijÞ ¼ r2. Then, the previous formula (2) can be rewritten as:

aij ¼
wi

wj
� exp ln

wj

wi
�W�1 wi

wj

	 
� �
þ mij

 �
¼ wi

wj
� edeij ; ð3Þ

where

deij ¼ ln
wj

wi
�W�1 wi

wj

	 
� �
þ mij: ð4Þ

In order to respect the property of reciprocal symmetry, we need
deij = �deji.

Taking a polynomial approximation, it is then possible to write
W�1(�) as (see, e.g., Bernasconi, Choirat, & Seri, 2011, p. 156):

W�1ðxÞ ¼ x � exp
XL

‘¼2

/‘ � ½lnðxÞ�
‘

( )
; ð5Þ

so that, when k/‘k1 = max26‘6Lj/‘j;0, W�1(x) ? x. Coefficients /‘’s
approximate the effect of the systematic distortion. Substituting
in Eq. (4) we obtain:

deij ¼ ln
wj

wi
�W�1 wi

wj

	 
� �
þ mij ¼

XL

‘¼2

/‘ � ½lnðwi=wjÞ�‘ þ mij: ð6Þ

Thus, under the hypotheses that k/‘k1 = max26‘6Lj/‘j ; 0 and r ; 0,
deij is asymptotically negligible. This expansion holds for all the
individuals in the group, so that we put an apex (k) on the quanti-
ties appearing in the above formula; for ease of notation, we sup-
pose that L is independent of k, since this can always be achieved

introducing some zero coefficients /ðkÞ‘ ’s.
We define the vectors of weights wðkÞ , wðkÞi

h i
, the matrices of

distortions dEðkÞ , eðkÞij

h i
and of random errors NðkÞ , mðkÞij

h i
. In ma-

trix notation, it is:

dEðkÞ ¼
XL

‘¼2

/ðkÞ‘ � ln wðkÞwðkÞT
� �h i�‘

þ NðkÞ þ oðk/‘k1Þ þ oPðrÞ

¼
XL

‘¼2

/ðkÞ‘ � lnwðkÞ
� �

� uT
n � un � ðlnwðkÞÞ

T
h i�‘

þ NðkÞ

þ oðk/‘k1Þ þ oPðrÞ: ð7Þ

While the order of the approximation can obviously be extended to
any desired degree, we retain the approximation in the first non-
zero term9:

dEðkÞ ’ /ðkÞ3 � ðlnwðkÞÞ � uT
n � un � ðlnwðkÞÞ

T
h i�3

þ NðkÞ: ð8Þ

8 For a more general discussion on the relation between the AHP and the modern
theory of separable representations we refer to Bernasconi et al. (2010).

9 Remark that here and in the following /ðkÞ2 is zero since the function
ln[W(k)]�1(exp (�)) is supposed to be skew-symmetric.
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This is indeed sufficient to characterize the regularities appearing in
several empirical data of individual decision making. All of the the-
oretical computations can evidently be repeated within the more
general model introduced above.

Replacing now dE(k) in the general formula (1) for u, we obtain:

u ’ wþ 1
n

XK

k¼1

bk � BðkÞdEðkÞun

’ wþ 1
n

XK

k¼1

bk � /
ðkÞ
3 � B

ðkÞ ðlnwðkÞÞ � uT
n � un � ðlnwðkÞÞ

T
h i�3

un

þ 1
n

XK

k¼1

bk � BðkÞNðkÞun: ð9Þ

The variance of the stochastic part is given by:

V
1
n

XK

k¼1

bk � BðkÞNðkÞun

 !
¼ 1

n

XK

k¼1

b2
kr
ðkÞ;2

� BðkÞ � In �
1
n

Un

	 

� BðkÞ;T

 �
; ð10Þ

the ‘‘bias’’ due to the deterministic part is given by:

E
1
n

XK

k¼1

bk � BðkÞdEðkÞun

 !
¼ 1

n

XK

k¼1

bk � /
ðkÞ
3

� BðkÞ ðlnwðkÞÞ � uT
n � un � ðlnwðkÞÞ

T
h i�3

un:

ð11Þ

Eqs. (10) and (11) provide the basis to assess the relative contri-
butions on the difference du ’ u �w of the stochastic components
due to mðkÞij and of the deterministic distortions due to the subjective
weighting function W(k)(�). In fact, for the case of individual deci-
sion making (K = 1), it is shown in Bernasconi et al. (2011) that
when j/3j is equal to the standard error of the noise r and the ele-
ments of w range on a small interval, then the effects of the deter-
ministic distortions and of the stochastic terms are comparable;
while when the stimuli in w are very different, the effects of the
deterministic distortions are much larger than those due to the sto-
chastic errors. This result is in line with the so-called homogeneity
axiom of the AHP (Saaty, 1986), which requires that the stimuli
used in the AHP must be in a range of comparability.

The same result holds here for /ðkÞ3

��� ��� ¼ rðkÞ, provided that the
w(k)’s (and the B(k)’s as a consequence) are not too dissimilar be-
tween individuals. In the latter case, moreover, the summands
for the individuals in Eq. (11) are also comparable and do not tend
to cancel out across individuals. On the other hand, Eq. (10) shows
that when K is large enough and the bk’s are far away from the ex-
treme case in which one b is 1 and the other ones are 0, the vari-
ance of the stochastic terms (due to b2

krðkÞ;2) tends to get smaller
with K. Therefore, this means that, whereas the stochastic compo-
nent tends to be averaged out in group decision making, the same
does not necessarily happen to the deterministic part.

In order to illustrate how the decomposition of Eq. (9) works in
practice, the previous formulas (10) and (11) are applied to the
data of the experiments described above with methods of class 1.
In that case, B(k) = W = (diag[w] �w �wT), so that the variance of
the stochastic part and the bias due to the deterministic part are
respectively given by:

V
1
n

XK

k¼1

bk � BðkÞNðkÞun

 !
¼ 1

n
�
XK

k¼1

b2
kr
ðkÞ;2

 !
�W2;

E
1
n

XK

k¼1

bk �BðkÞdEðkÞun

 !
¼1

n
�W �

XK

k¼1

bk �/
ðkÞ
3 � lnwðkÞ

� �
�uT

n �un � lnwðkÞ
� �T

� ��3

un:

In Table 3, we provide a comparison of the different contribu-

tions to u.10 In the computations, the parameters w(k)’s and /ðkÞ3 ’s
appearing in the above formulas are replaced by their estimates
(see below on how to obtain the estimates). The ‘‘effect of W’’ is

given by 1
n �W � 1

K

PK
k¼1 � /

ðkÞ
3 � ðlnwðkÞÞ � uT

n � un � ðlnwðkÞÞ
T

h i�3
	 


� un

and the ‘‘effect of noise’’ is given by 1
n W � 1

K

PK
k¼1NðkÞ

� �
� un. The

‘‘remainder’’ is u �w � du and may be different according to the
various aggregation methods of the class. It is evident that both
the effect of the noise and of the remainders computed according
to any method are much smaller than the effect of the deterministic
distortions.

4.3. Corrections of deterministic distortions

The results of the previous subsection shows that it is important
to correct for deterministic distortions in group aggregation. A di-
rect way to make the corrections is provided by the computations
underlying Table 3. The method is based on individual-specific

estimates of parameters /ðkÞ3 . Obviously, the closer are the individ-

ual estimates to the true parameters /ð1Þ3 ; . . . ;/ðKÞ3 , the better are the
corrections.

A method to obtain consistent estimates, denoted with
�/ð1Þ3 ; . . . ; �/ðKÞ3 , from any judgment matrix A(k) is developed in Bernas-
coni et al. (2010). The method is a generalization of the LLS ap-
proach to obtain the priority vector w(k) according to the analysis
of Genest and Rivest (1994). The procedure has been used in the
three experiments eliciting probabilities in games of chances, dis-
tances between cities, and rainfalls in European cities. Estimates

have found values of �/ðkÞ3 between �1 and 0 for the large majority
of the 69 subjects participating in the study, with medians of the
individual estimates very close to �0.03 in all the three experi-
ments. The findings are consistent with the tendency of people
to overestimate low ratios and underestimate high ratios, as pre-
dicted by cognitive arguments.

Subject-specific estimates �/ðkÞ3 ’s are useful to rank the extent of
systematic biases of different individuals. Indeed, if one believes
that cognitive biases in the perception of numbers are related to
a more general attitude of agents to produce inconsistent reason-

ings,11 subject-specific estimates �/ðkÞ3 ’s might also be useful to deter-
mine the weights of the subjects in the group. For example, greater
weights b1, . . . ,bK could be assigned to members with smaller abso-

lute values of �/ðkÞ3 ’s because considered more generally capable to
provide coherent judgments.

In some cases, it may be too costly to obtain a full set of subject-
specific estimates �/ðkÞ3 ’s. A possibility in these cases is to use a
‘‘representative’’ model of �/3 to correct all individual judgment

10 With the above expressions, a limiting case that well illustrates the averaging
effect is when all individuals are equally weighted (bk = K�1), have the same variances
(r(k),2 = r2), the same deterministic distortions ð/ðkÞ3 ¼ /3Þ, and the w(k)’s are equal so
that w(k) = w. In such a case:

V
1
n

XK

k¼1

bk � BðkÞNðkÞun

 !
¼ 1

nK
� r2 �W2;

E
1
n

XK

k¼1

bk � BðkÞdEðkÞun

 !
¼ 1

n
�W � /3 � ðlnwÞ � uT

n � un � ðlnwÞ
T

h i�3
un:

Thus, the deterministic distortion is equal to the one of a single individual. On the
other hand, the variance of the stochastic part is equal to the same quantity for a sin-
gle individual divided by K.

11 For example, in the classical expected utility theory of choice under risk,
outcome-probabilities correspond to decision weights and agents who subjectively
transform probabilities are often considered exposed to a form of irrational behavior
(discussion on this issue in, e.g., Neilson, 2003).
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matrices A(k)’s.12 Representative models are computationally sim-
pler and statistically less demanding to estimate than individual-
specific models. Approaches based on ‘‘representative’’ agents are
adopted in many theories of decision making (for example, in the
specification of the probability weighting of classical Prospect The-
ory;
e.g., Tversky & Kahneman, 1992).

A ‘‘representative’’ model based on the median values of the
subject-specific estimates of �/ðkÞ3 is discussed in Bernasconi et al.
(2010). The results of that paper shows that corrections based on
individual-specific estimates are similar to those obtained by the
median representative model. The analysis conducted here
indicates that corrections of the median model may be even more
performing in group decision making: when averaging over indi-
viduals, the use of a representative agent may be able to remove
(almost) all of the effect of systematic distortions, while the law
of large numbers remove the effect of the noise.

5. Conclusion

Here we have developed a framework to compare the theoretical
priority vector of interest w with the empirical priority vector u,
which can be obtained by various combinations of prioritization
methods and aggregation rules in the AHP for group decision.
The analysis based on the first-order differential of u around w
has shown how to identify five main classes of methods which
predict very similar values for vectors u’s. The predictions are

confirmed in experimental tests conducted with real human sub-
jects in the domain of tangibles.

Our results are useful for implementation of group aggregation.
As discussed in Section 2, a large literature has debated on different
aspects of the aggregating techniques which can be employed in
AHP group decision. The theoretical analysis has shown, and the
empirical applications have confirmed, that some aspects of the
dispute may be less relevant than previously thought. On the one
hand, the choice of the levels at which to conduct the aggregation,
namely whether of individual judgments (AIJ) or individual prior-
ities (AIP), has little relevance for the empirical results of the aggre-
gation when the weighted geometric mean method is used as
averaging procedure. In this respect, there seems to be little reason
to dispute whether the group should be considered as a ‘new agent’
or a ‘collection of independent individuals’ as sometimes argued in
connection with the choice of the level of aggregation.13 On the
other hand, the aggregated empirical results seem to be more sensi-
tive to the averaging procedures chosen in the aggregation and the
prioritization methods. Regarding the former issue, we have shown
that several aggregating techniques discussed in the literature yield
an aggregated priority vector that is not normalized. This implies a
degree of indeterminacy in the vectors obtained which rules out
the procedures. We have classified various aggregating methods
which should not be considered for this reason. As concerns the
methods of prioritization, our analysis has shown that, in practice,
there are effectively no differences between the classical maximum
eigenvalue (ME) and the logarithmic least squares (LLS) when ap-
plied in the various aggregating procedures used in the AHP. Quite
interestingly, we have shown that there is more difference between
the previous two methods and the row geometric mean (RGM), de-
spite the latter is often considered in the literature as similar to LLS.

The analysis has also shown how to decompose the first-order
difference du ’ u �w in the components due to random errors
and the components caused by systematic cognitive distortions
predicted in mathematical psychology. The importance to distin-
guish the two components has been previously documented, for
individual decision making, both theoretically and empirically. In

Table 3
Decomposition of factors contributing to aggregated priority weights – methods of class 1.

(a) Chances experiment
w 0.10394883 0.02773954 0.52207564 0.05891376 0.28732224
Effect of W 0.031213212 0.016974320 �0.078534838 0.023084544 0.007262762
Effect of noise �0.001433746 �0.000182062 0.008228877 0.001401058 �0.008014128
remainder: AIJ-WGM-ME 0.002065247 0.005019648 �0.005661833 0.002772673 �0.004195734
remainder: AIJ-WGM-LLS 0.001804774 0.005220089 �0.005027708 0.004003439 �0.006000594
remainder: AIP-NWGM-ME 0.001700367 0.004019311 �0.005995150 0.003359983 �0.003084512
remainder: AIP-NWGM-LLS 0.001804774 0.005220089 �0.005027708 0.004003439 �0.006000594
remainder: AIP-NWGM-RGM 0.001804774 0.005220089 �0.005027708 0.004003439 �0.006000594

(b) Distances experiment
w 0.24313450 0.54210640 0.13481816 0.02807432 0.05186662
Effect of W 0.02535673 �0.09595689 0.03184458 0.01723847 0.02151710
Effect of noise �0.005262513 0.005719404 �0.000790453 �0.000296605 0.000630167
remainder: AIJ-WGM-ME �0.006990169 �0.001245584 �0.000238222 0.005242587 0.003231388
remainder: AIJ-WGM-LLS �0.005241967 �0.003483988 �0.00005032866 0.005131237 0.003645046
remainder: AIP-NWGM-ME �0.004636354 �0.001970196 �0.001289040 0.005087379 0.002808211
remainder: AIP-NWGM-LLS �0.005241967 �0.003483988 �0.00005032866 0.005131237 0.003645046
remainder: AIP-NWGM-RGM �0.005241967 �0.003483988 �0.00005032866 0.005131237 0.003645046

(c) Rainfall experiment
w 0.03335836 0.21287038 0.54011748 0.15225254 0.06140124
Effect of W 0.01955399 0.02501103 �0.09549464 0.02746318 0.02346643
Effect of noise �0.000622832 �0.003889342 0.006172079 �0.001863904 0.000203999
remainder: AIJ-WGM-ME 0.005355531 �0.004760431 �0.001881604 �0.001659171 0.002945675
remainder: AIJ-WGM-LLS 0.005277020 �0.004003153 �0.002910622 �0.001619700 0.003256455
remainder: AIP-NWGM-ME 0.005299617 �0.004324307 �0.005781009 0.001357388 0.003448311
remainder: AIP-NWGM-LLS 0.005277020 �0.004003153 �0.002910622 �0.001619700 0.003256455
remainder: AIP-NWGM-RGM 0.005277020 �0.004003153 �0.002910622 �0.001619700 0.003256455

12 For example, a simple model that can be used to correct the entries of a judgment

matrix can be obtained replacing aðkÞij with �aðkÞij ¼ exp ln aðkÞij � �/ðkÞ3 � ln aðkÞij

h i3
 �

,

where �/ðkÞ3 is an estimate of /ðkÞ3 . Substituting the expression in Eqs. (5) and (6) (and
using the fact that the errors are asymptotically negligible), one obtains:

ln �aðkÞij ’ ln wðkÞi =wðkÞj

� �
þ /ðkÞ3 � �/ðkÞ3

� �
� ln wðkÞi =wðkÞj

� �h i3
:

Clearly, the expression confirms that the closer are the estimates �/ðkÞ3 ’s to the true
/ðkÞ3 ’s, the better are the corrections. Using a ‘‘representative’’ estimate �/3 for all
the members of a group can in some cases be a simplifying procedure which reduces
the cost of estimating subject-specific distortions. 13 This issue can be more relevant in the choice of the weights bk’s.
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particular, deterministic distortions tend to be larger than those
due to stochastic errors. The results are confirmed here for group
decision making. Moreover, in group decision making, the effect
of the deterministic distortions may become even more important
because, while the stochastic errors tend to be averaged out with
the size of the group, the deterministic distortions do not necessar-
ily follow the same law. This implies that it is even more important
to correct for deterministic distortions in group decision making
than in individual decision making. The correction procedure can
be based either on individual-specific estimates of the parameters
of the distortions (parameters �/ðkÞ3 ’s in Section 4), or on representa-
tive agent estimates.

The proposed analysis has focussed on the empirical properties
of group preference aggregation methods in the AHP. It comple-
ments more standard approaches which look at consistency mea-
sures and judge the quality of u on the basis of those measures.
Consistency is a very important requirement in order to use AHP
techniques properly, both in individual and in group decision mak-
ing; but, by itself, consistency does not say anything on the quality
of u to represent the true priority vector w of interest (Saaty, 2003).
Future research must better integrate consistency considerations
with the evaluation and decomposition of the (first-order approx-
imation) difference du ’ u �w into a unified framework.
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