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a b s t r a c t

The objective is to develop a reliablemethod to build confidence sets for the Aumannmean
of a random closed set as estimated through theMinkowski empiricalmean. First, a general
definition of the confidence set for the mean of a random set is provided. Then, a method
using a characterization of the confidence set through the support function is proposed
and a bootstrap algorithm is described, whose performance is investigated in Monte Carlo
simulations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

After the first pioneering works of Matheron and Kendall (see Matheron, 1972; Kendall, 1974; Matheron, 1975), the
study of random sets is receiving growing attention in the literature. Random sets have proved to be a valuable modelling
tool in Economics, Physics and Biology and their theory offers a suitable framework to analyze old problems (as examples,
consistency through Painlevé–Kuratowski convergence of epigraphs in statistics, see Choirat et al. (2003), transaction costs
and risk measures in finance and partially identified models in econometrics, see Molchanov (2010)). However, statistical
theory lags behind and most contributions deal with the properties of restricted classes of models, as the Boolean model
(see, e.g., Molchanov, 1997). In this paper we aim at providing confidence sets for the mean of a random closed set (RACS).
The literature on this topic is quite limited. In Seri and Choirat (2004), confidence sets based on Gaussian limit theory
(see Theorem 1 below) are built for the Aumann mean of a RACS. In Jankowski and Stanberry (2012), the authors propose
confidence sets for the Oriented Distance Function (ODF) mean (see Jankowski and Stanberry, 2010). The case of confidence
sets for themeanof a fuzzy randomvariable is dealtwith inGonzález-Rodríguez et al. (2009). Further references on statistical
procedures for the mean of fuzzy random variables are Montenegro et al. (2004), Gil et al. (2006), González-Rodríguez et al.
(2012) and Ramos-Guajardo and Lubiano (2012).

After a review of the limit theory of RACSs in Euclidean spaces (Section 2), we provide some definitions of confidence
sets for the mean of a RACS or, more properly, for the outline of its mean, since they contain it with prescribed probability
(Section 3). One of the simplest ways — and the one we advocate here — to implement the confidence set is to use
parallel bodies (see Schneider, 1993, pp. 134–135) and to resort to the support function embedding (see Schneider,
1993, Theorem 1.7.1). This yields asymptotically conservative/exact confidence regions that can be estimated through a
bootstrap procedure. Computational details are dealt with in Section 4. In particular, in this section, using an example
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in which complete closed-form solutions exist, we discuss the dependence of the confidence set on the choice of the set
relatively to which the parallel bodies are computed, then we compute the confidence sets on real data using the by-now
classical sand grains data of Stoyan (1997), and at last we provide someMonte Carlo evidence about the performance of the
method.

2. Limit theorems for RACSs

In the following, we introduce a number of definitions and we recall the Law of Large Numbers (LLN) and the Central
Limit Theorem (CLT) for RACSs.

Consider the Euclidean space Rd endowed with the distance ρ, the Euclidean norm ∥·∥ and the inner product ⟨·, ·⟩. Let
Sd−1 ,


u ∈ Rd

: ∥u∥ = 1

be the hypersphere and B ,


u ∈ Rd

: ∥u∥ ≤ 1

be the ball, both with radius 1. Let (Ω, A, P)

be a complete probability space.
The distance function from a point x to the set C ⊂ Rd is:

ρ (x, C) , inf
y∈C

ρ (x, y) .

The norm of a set C is ∥C∥ , sup {∥x∥ , x ∈ C}. The support function of C (see Ghosh and Kumar, 1998 for several useful
properties and examples) is:

h (y, C) = hC (y) , sup
x∈C

⟨y, x⟩ = sup
x∈C


d

i=1

yixi


.

To simplify the notation, whenever clear from the context we will remove the indication of the variable y from the support
function. Since h is positively homogeneous of degree 1, it is customary to consider its restriction to Sd−1. Therefore, in the
following hC (·) will be defined on Sd−1. This function characterizes completely closed convex sets. Any subadditive real-
valued function on Sd−1 is the support function of a nonempty compact convex set (Theorem 1.7.1 in Schneider, 1993). The
Hausdorff distance between two sets C and C ′ is defined by

ρH

C, C ′


, max


sup
x∈C

ρ (x, C) , sup
x′∈C ′

ρ

x′, C


.

Hörmander’s formula relates the Hausdorff distance between sets to the L∞-distance between support functions:

ρH

C, C ′


= sup

y∈Sd−1
|hC (y) − hC ′ (y)|

(see also Molchanov, 2005, p. 198, Eq. (1.8), or Schneider, 1993, p. 53, Theorem 1.8.11).
TheMinkowski sum of two sets A and B is defined by:

A ⊕ B , {x + y : x ∈ A, y ∈ B} .

TheMinkowski difference of the sets A and B is:

A ⊖ B , {x : {x} ⊕ B ⊆ A}

(see, e.g., Schneider, 1993, p. 133,where a different symbol is used; see the same source, pp. 127 and 137 for other definitions
of the difference of sets). In particular, this should not be confused with the set-theoretic difference of A and B or relative
complement of B in A:

A \ B , {x : x ∈ A, x ∉ B} .

The product of a scalar ε and a set A is:

εA , {ε · x : x ∈ A} .

If A and B are closed convex sets and ε > 0, we have:

hA⊕B (·) = hA (·) + hB (·) ,

hA⊖B (·) ≤ hA (·) − hB (·) ,

hεA (·) = εhA (·)

(see, e.g., Schneider, 1993, respectively at p. 41, p. 134, p. 38). Let A, B be closed convex sets and let ε ≥ 0 be a real number.
The sets A⊕εB and A⊖εB are called parallel bodies of A relative to B (see Schneider, 1993, pp. 134–135). In particular, A⊕εB
is called outer parallel body and A ⊖ εB is called inner parallel body.
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Let F (K) be the set of closed (compact) subsets of Rd. A mapping X : Ω → F is called a random closed set (RACS) if, for
every K ∈ K, {ω : X (ω) ∩ K ≠ ∅} ∈ F (seeMolchanov, 2005, p. 1, Definition 1.1). A random closed set X with almost surely
compact values (i.e. such that X ∈ K P − as) is called a random compact set (see Molchanov, 2005, p. 21, Definition 1.30). A
measurable selection from X is a measurable function f : (Ω, A, P) → Rd that satisfies f (ω) ∈ X (ω) for almost any ω ∈ Ω .
The Aumann mean of a random closed set X is the set of integrals of measurable selections from X:

EX =

Ef : f ∈ L1 (Ω, A, P) , f (ω) ∈ X (ω) P − as


(see Molchanov, 2005, p. 151, Definition 1.13). The Aumann mean of a RACS can be characterized through the support
function as the set EX such that the following equality holds:

hEX (·) = EhX (·) .

This characterization holds under conditions detailed in Molchanov (2005, Theorem 1.22, p. 157).
Now,we state some preliminary results. Let (X1, X2, . . .) be a sequence of iid random sets inRd. We define theMinkowski

mean of the sample as:

X̄n ,
1
n

{X1 ⊕ X2 ⊕ · · · ⊕ Xn−1 ⊕ Xn} ,

also indicated in the following as X̄n =
1
n

n
i=1 Xi. It is clear that hX̄n =

1
n

n
i=1 hXi . A well known result (see Artstein and

Vitale, 1975; Puri and Ralescu, 1985; Artstein and Hansen, 1985) states that RACSs satisfy a LLN.

Theorem 1. Let X1, X2, . . . be a sequence of iid random sets in Rd with E ∥X1∥ < ∞. Then

X̄n
as
−→ EX,

where convergence holds in the Hausdorff distance.

The Aumann mean is always a convex set, even if the random set X is not convex. However, this is not a problem,
since Shapley–Folkman’s inequality (see, e.g, Weil, 1982, p. 205) implies that the Hausdorff distance between 1

n

n
i=1 Xi

and 1
n

n
i=1 coXi (where co Xi is the convex hull of Xi) goes to 0 as n → ∞.

CLTs for RACSs have been proved by Cressie (1979),Weil (1982), Ljašenko (1979), Giné et al. (1983) and Puri and Ralescu
(1985). The paper (Cressie, 1979) first stated the CLT as an asymptotic distributional result for the Hausdorff distance
between the empirical Minkowski mean and the Aumannmean, that is ρH


X̄n, EX


, a formulation that has been adopted by

most papers in the following. However, as we will show in the next section, we prefer to state our CLT in terms of support
functions instead of Hausdorff distances.

Therefore, we get the following result (see Weil, 1982).

Theorem 2. Let X1, X2, . . . be a sequence of iid random sets in Rd with E ∥X1∥
2 < ∞. Then

√
n ·

hX̄n (·) − hEX (·)

 D
−→ Z (·) ,

where Z (·) is a Gaussian centered process on Sd−1 of covariance function ΓX (y, z) , E (Z (y) Z (z)) for y, z ∈ Sd−1.

From Hörmander’s formula, Weil (1982) obtains the following limit theorem for the Hausdorff distance between the
empirical Minkowski mean of a sample of iid RACSs and its Aumannmean (see also Molchanov, 2005, p. 214, Theorem 2.1).

Corollary 3. Let X1, X2, . . . be a sequence of iid random sets in Rd with E ∥X1∥
2 < ∞. Then

√
n · ρH


X̄n, EX

 D
−→ sup

y∈Sd−1
|Z (y)| ,

where Z (·) is a Gaussian centered process on Sd−1 of covariance function ΓX (y, z) = E (Z (y) Z (z)) for y, z ∈ Sd−1.

3. Theoretical aspects of confidence sets for the Aumann mean of a RACS

3.1. Definitions

Here is our definition of confidence sets for the mean of a random closed set. Even though our main interest is for the
Aumann mean, this definition may be of broader interest.

In the following, we will use the notations ≃ and &. Let {an} and {bn} be two sequences of constants. In general, we write
an ≃ bn (resp., an & bn) to say that limn→∞ an = limn→∞ bn (resp., limn→∞ an ≥ limn→∞ bn). If bn is independent of n, the
definition varies accordingly.
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Definition 4. Consider two sequences of random sets

K ′
n


and


K ′′
n


, with K ′

n and K ′′
n constructed as Borel measurable

functions of the sample {X1, . . . , Xn}. Suppose moreover that K ′
n ⊆ K ′′

n for every n. Then, the relative complement K ′′
n \ K ′

n is
a confidence set of level α for the (outline of the) Aumann mean EX of the random closed set X if:

P

K ′

n ⊆ EX ⊆ K ′′

n


& 1 − α.

The confidence set is respectively called exact, conservative, asymptotically exact and asymptotically conservative if:

P

K ′

n ⊆ EX ⊆ K ′′

n


= 1 − α,

P

K ′

n ⊆ EX ⊆ K ′′

n


≥ 1 − α,

lim
n→∞

P

K ′

n ⊆ EX ⊆ K ′′

n


= 1 − α,

lim
n→∞

P

K ′

n ⊆ EX ⊆ K ′′

n


≥ 1 − α.

If K ′
n = ∅, we call K ′′

n an external confidence set. If K ′′
n coincides with the whole space, we call K ′

n an internal confidence set.

In this paper, we will pursue the idea of using an outer (inner) parallel body as an external (internal) confidence
set.

Definition 5. Confidence sets based on parallel bodies are defined as K ′
n , X̄n ⊖ λ′

nB and K ′′
n , X̄n ⊕ λ′′

nB, where λ′
n and λ′′

n
are positive constants chosen to respect one of the formulas in Definition 4. The set B is a convex structuring element with
nonempty interior and properly containing the origin.

The set B allows the researcher to control the extent of the confidence sets in all the directions. As an example, in the
case of isotropic random closed sets, i.e. random sets whose distribution is invariant under rotations around the origin
(seeMolchanov, 2005, p. 49), it is natural to take B = B, the unit ball; this choice has also definite computational advantages
since hB (·) ≡ 1, and this simplifies the computations. But in some cases, a different choice can lead to better confidence
regions, as shown in Section 4.1. The fact that B is convex, with nonempty interior and properly contains the origin implies
that hB (·) > 0 for every y, a property that will be used in the following. Remark that it would be possible to consider two
different structuring elements for the internal and the external confidence sets: however, we leave the necessary changes
to the reader.

3.2. Confidence sets through support functions

Using the support function embedding, we get:

P

K ′

n ⊆ EX ⊆ K ′′

n


= P


hK ′

n
≤ hEX ≤ hK ′′

n


= P


hX̄n⊖λ′

nB ≤ hEX ≤ hX̄n⊕λ′′
nB


= P


hX̄n⊖λ′

nB ≤ hEX ≤ hX̄n + λ′′

n · hB


≥ P

hX̄n − λ′

n · hB ≤ hEX ≤ hX̄n + λ′′

n · hB


= P

λ′

n ≥
hX̄n − hEX

hB
≥ −λ′′

n


, (3.1)

where the fourth step comes from the relation hX̄n⊖λ′
nB ≤ hX̄n − λ′

n · hB (see, e.g., Schneider, 1993, p. 134).
It is clear that the support function embedding allows one to write:

P

K ′

n ⊆ EX ⊆ K ′′

n


≥ P

√
nλ′

n


· hB ≥

√
n

hX̄n − hEX


≥ −

√
nλ′′

n


· hB


≃ P

√
nλ′

n


· hB ≥ Z ≥ −

√
nλ′′

n


· hB


,

where Z is the process of Theorem 2, and
√
nλ′

n or
√
nλ′′

n should be chosen accordingly. This strategy has been pursued
by Seri and Choirat (2004) in a more limited context, but has some drawbacks. In particular, the method works as follows.
First, the process Z is replaced by a discrete version supported by a subset of p points on the sphere Sd−1; this, in particular,
implies that the covariance function ΓX of Z is replaced by a covariance matrix. Second, this covariance matrix is estimated
using the values of the support functions in the p points. The first drawback is that the discretization introduces an error
that decreases when p → ∞ but is difficult to control. This is worsened by the second drawback of the method, namely
the fact that, in order to obtain a nonsingular covariance matrix, p has to be smaller than n. The second drawback could
be corrected using one of the methods available to estimate covariance matrices with p > n. However, even in this
case, we do not expect the method to work better than the one proposed in the present paper, that is based on the
bootstrap.
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It is helpful to remark that (3.1) leads to:

P

λ′

n ≥
hX̄n − hEX

hB
≥ −λ′′

n


= P


λ′

n ≥ sup
y

hX̄n − hEX

hB


inf
y

hX̄n − hEX

hB
≥ −λ′′

n


= 1 − P


λ′

n < sup
y

hX̄n − hEX

hB


− P


inf
y

hX̄n − hEX

hB
< −λ′′

n


+ P


λ′

n < sup
y

hX̄n − hEX

hB


inf
y

hX̄n − hEX

hB
< −λ′′

n


≥ 1 − P


λ′

n < sup
y

hX̄n − hEX

hB


− P


inf
y

hX̄n − hEX

hB
< −λ′′

n


.

Choosing λ′
n and λ′′

n in such a way that the following equalities hold asymptotically:

P

λ′

n < sup
y


hX̄n − hEX

hB


≃ α1,

P

inf
y


hX̄n − hEX

hB


< −λ′′

n


≃ α2,

where α1 and α2 are such that α1 + α2 = α, we get a confidence set with asymptotic coverage at least 1 − α.
The choice of λ′

n and λ′′
n (or of α1 and α2) may follow five methods (see Hall and Pittelkow, 1990, for analogues of the last

three in the case of confidence bands in regression):
1. One-sided external regions, in which the Aumann mean is expected to be included with prescribed probability: this

means that K ′
n = ∅, α1 = 0 or λ′

n = +∞. Remark that the equality λ′
n = +∞ is only a formal way to state that K ′

n = ∅,
since λ′

n equal to the inradius of X̄n relative to B would be enough (see Schneider, 1993, p. 135). We expect these sets to
be asymptotically exact, since the inequality above becomes an equality. In this case, we can write:

1 − α ≃ P

inf
y


hX̄n − hEX

hB


≥ −λ′′

n


= P


EX ⊆ K ′′

n


,

α ≃ P

inf
y


hX̄n − hEX

hB


< −λ′′

n


.

2. One-sided internal regions, that are contained in the Aumann mean with prescribed probability: this means that K ′′
n =

Rd, α2 = 0 or λ′′
n = +∞. In this case:

1 − α ≃ P

sup
y


hX̄n − hEX

hB


≤ λ′

n


≤ P


K ′

n ⊆ EX

.

Weexpect this set to be asymptotically exact only in special cases (in this respect, the concept of summand, see Schneider,
1993, p. 134, can turn out to be useful).

3. Two-sided symmetric regions: the internal and external sets are determined in such a way that the two quantiles are
equal, i.e. λ′

n = λ′′
n:

P

sup
y

hX̄n − hEX

hB

 ≤ λ′

n


≃ 1 − α.

Remark that, when B = B, this corresponds to the Weil’s CLT seen above.
4. Two-sided equal-tailed regions: the probability of the outline lying in the region is predetermined, and the probability

of the external set containing and of the internal set being contained in the Aumann mean determined in this way are
(almost) equal, i.e. α1 = α2. Therefore:

P

λ′

n < sup
y


hX̄n − hEX

hB


≃ P


inf
y


hX̄n − hEX

hB


< −λ′′

n


≃

α

2
.

5. Two-sided narrowest-width regions: in this case the sets are determined as to minimize the width of the region, i.e. the
sum of the two quantiles. The problem becomes:

min
λ′
n,λ

′′
n

λ′

n + λ′′

n

under


P

λ′

n < sup
y


hX̄n − hEX

hB


≃ α1,

P

inf
y


hX̄n − hEX

hB


< −λ′′

n


≃ α2,

α1 + α2 = α.
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Table 1
Bootstrap formulas for quantiles of confidence sets.

Bootstrap

One-sided External α = P

infy


h⋆
X̄n

−hX̄n
hB


< −λ′′

n |Pn


Internal 1 − α = P


supy


h⋆
X̄n

−hX̄n
hB


≤ λ′

n |Pn



Two-sided
Symmetric P


supy

 h⋆
X̄n

−hX̄n
hB

 ≤ λ′
n |Pn


= 1 − α

Equal-tailed


P


supy


h⋆

X̄n
− hX̄n

hB


≤ λ′

n |Pn


= 1 −

α

2

P


infy


h⋆

X̄n
− hX̄n

hB


< −λ′′

n |Pn


=

α

2

Narrowest-width



minλ′
n,λ′′

n
λ′

n + λ′′

n

P


supy


h⋆

X̄n
− hX̄n

hB


≤ λ′

n |Pn


= 1 − α1

P


infy


h⋆

X̄n
− hX̄n

hB


< −λ′′

n |Pn


= α2

α1 + α2 = α

3.3. The bootstrap algorithm

In this paper, we propose to use the bootstrap to approximate the quantiles λ′
n and λ′′

n seen above. This is clearly a case
of bootstrap for functional data (Cuevas et al., 2006; McMurry and Politis, 2011).

Let Pn be the empirical distribution of the sample Pn ,

hX1 , hX2 , . . . , hXn


, defined as Pn = n−1n

i=1 δhXi
, where δh

is the Dirac mass in h. Suppose to draw with replacement a sample P ⋆
n ,


h⋆
X1

, h⋆
X2

, . . . , h⋆
Xn


from Pn. The bootstrap

probability is defined as the empirical probability of P ⋆
n , conditionally on Pn, namely as P⋆

n |Pn = n−1n
i=1 δh⋆

Xi
. Let T be a

functional defined on a set of probabilities containing P, Pn and P⋆
n. As an example, in the present case, T (P) =


Ω hX(ω)dP(ω)

hB
.

Our interest is to study the distribution of the difference [T (Pn) − T (P)]. It turns out that

T

P⋆
n


− T (Pn)


|Pn is a good

approximation to this distribution, that in general works much better than usual asymptotic approximations. Remark that
the only variability in


T

P⋆
n


− T (Pn)


|Pn comes from the sampling mechanism from the fixed empirical probability Pn.

This is evident ifwewriteP⋆
n |Pn = n−1n

i=1 Mni ·δhXi
whereMni is the (random) number of times that (the fixed) hXi appears

inP ⋆
n , and the vectorMn = (Mn1, . . . ,Mnn) ∼ Mult


n; 1

n , . . . ,
1
n


is distributed according to amultinomial distributionwith

parameter n and probabilities

n−1, . . . , n−1


.

Using the bootstrap, we replace the original quantities with their bootstrap analogues conditionally on the observed
sample Pn:

P

λ′

n ≥ [T (Pn) − T (P)] ≥ −λ′′

n


≃ P


λ′

n ≥

T

P⋆
n


− T (Pn)


≥ −λ′′

n |Pn


or:

P

λ′

n ≥
hX̄n − hEX

hB
≥ −λ′′

n


≃ P


λ′

n ≥

h⋆

X̄n
− hX̄n

hB
≥ −λ′′

n |Pn


.

Following the same derivations that have led to the formulas for methods 1–5, we get the bootstrap formulas in Table 1.
We are left with the problem of verifying the theoretical convergence of the bootstrap confidence regions. This is the

subject of the next theorem, whose proof is very simple. A similar result is Proposition 2.1 in Beresteanu and Molinari
(2008), but Theorem 6 is more general since it provides a necessary and sufficient condition and more suitable for our aims
since it is stated in terms of the support function.

Theorem 6. Let X1, X2, . . . be a sequence of iid random sets in Rd. Then the condition E ∥X1∥
2 < ∞ is equivalent to:

√
n ·


h⋆

X̄n
(·) − hX̄n (·)


D
−→ Z (·) as,

where Z (y) is the Gaussian centered process defined in Theorem 2.
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Proof. The functions hXi , for i = 1, . . . , n, are iid C

Sd−1


-valued random elements, where C


Sd−1


is a separable Banach

space. Therefore, Remark 2.5 in Giné and Zinn (1990) or Corollary 2 in McMurry and Politis (2011) can be applied. The
condition E ∥X1∥

2 < ∞ guarantees that the CLT holds as in Theorem 2. This, together with E
hX1

2 < ∞, guarantees

that the convergence result in the statement holds true. From E
hX1

2 = E ∥X1∥
2 (see, e.g., Weil, 1982, p. 206), we get the

result. �

A first problem, common to most instances of the bootstrap, is that the probability P⋆
n |Pn is known but difficult to

manage. Therefore, it is generally approximated randomly drawing a set of J new samples P ⋆
nj for j = 1, . . . , J of size

n, each one with replacement from the original one Pn, and building the empirical cdf P⋆,J
n |Pn . If J is large enough,

T


P⋆,J
n


− T (Pn)


|Pn ≃


T

P⋆
n


− T (Pn)


|Pn .

A second problem is that, except for special cases, the functions hX can be handled only after a discretization. This is
usually done replacing the support function with its discretized version along p directions on the sphere Sd−1. In the special
case d = 2, that is the one we will consider in our simulations, it is possible to discretize hX taking p equi-spaced points on
S1. In all other cases, the choice of the directions can be helped using deterministic sequences defined on the sphere (see Cui
and Freeden, 1997; Choirat and Seri, forthcoming, and references therein). In the simulations of Section 4.3, we will try to
investigate empirically the effect of the discretization error letting p vary from 5 to 640.

4. Computational aspects of confidence sets for the Aumann mean of a RACS

4.1. The choice of the set B

We consider an example in R2 that has the advantage of offering a complete closed-form solution. Since our aim is just to
show that the choice of the set B can influence the form of the confidence set, we will not use the bootstrap algorithm
described above, but we will use exact quantiles; the extension to quantiles obtained through the asymptotic normal
approximation or the bootstrap is left to the reader. We only deal explicitly with one-sided external and internal confidence
sets based on exact quantiles, while two-sided confidence sets are briefly considered at the end of the section. Moreover,
we first provide formulas for the exact confidence sets as obtained through geometric reasoning. After that, we provide a
derivation of the confidence sets proposed above using the support function. The derivation of the expressions for λ′

n and
λ′′
n is briefly outlined in Appendix A.
We consider a sample of sets defined as Xi = Ei ·H , where Ei ∼ E (1), an exponential random variable with parameter 1,

and H , [−1, +1]2, the filled square of side 2 centered at the origin. We write Ēn =
1
n

n
i=1 Ei, where n · Ēn ∼ Γ (n, 1); let

γn,α be the lower α-quantile of Γ (n, 1). The simplest way to obtain hXi is to remark that only the vertices of Xi contribute to
it (since a set and its convex hull have the same support function); then, using the definition of support function and some
simple trigonometry, it can be shown that:

hXi (y) =
√
2Ei · max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ) .

From this, we get hEX (y) =
√
2 · max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ) , hX̄n (y) =
√
2 · Ēn · max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ) and

X̄n = Ēn · H .
We start from the confidence sets based on geometric reasoning. Consider first the external confidence sets. If we take

B = B, we have K ′′
n = X̄n ⊕

√
2 ·

1 −

γn,α
n


B; if we take B = H , we have K ′′

n = X̄n ⊕

1 −

γn,α
n


H . Consider now the internal

confidence sets. If we take B = B, we have K ′
n = X̄n ⊖

 γn,1−α

n − 1

B; if we take B = H , we have K ′

n = X̄n ⊖
 γn,1−α

n − 1

H .

It is not completely clear from the formulas that indeed X̄n ⊖
 γn,1−α

n − 1

B = X̄n ⊖

 γn,1−α

n − 1

H , so that the two sets

yield exactly the same internal confidence region. This is not true for the external sets: in this case, the square leads to the
smallest confidence set with the required coverage, while the ball leads to a set that is a little larger thanwhat really needed,
despite remaining exact.

As far as the construction based on the support function is concerned, consider first the external confidence sets. The
one based on B = B offers no difficulty: using the approach of Section 3.2, the quantile turns out to be λ′′

n =
√
2

1 −

γn,α
n


and the support function is hX̄n⊕λ′′

nB
(y) =

√
2 · Ēn · max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ) + λ′′
n . Remark that the set thus obtained

is a square with rounded corners: a smaller confidence set with the same coverage level can be obtained choosing B = H .
In this case, the quantile is λ′′

n = 1 −
γn,α
n and the external confidence set has support function given by hX̄n⊕λ′′

nH (y) =
√
2 ·

Ēn + λ′′

n


· max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ). This is a square and is the smallest possible set with coverage level equal

to 1 − α. Remark that the external sets coincide with the ones obtained through geometric reasoning.
Now consider the construction based on the support functions for the internal sets. If we take B = H , the approach of

Section 3.2 yields the quantile λ′
n =

γn,1−α

n − 1, the support function hX̄n (y) − hλ′
nH (y) = hX̄n⊖λ′

nH (y) =
√
2 ·

Ēn − λ′

n


·

max
θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ) and the set K ′
n = X̄n ⊖

 γn,1−α

n − 1

H .
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On the other hand, if we take B = B, some problems arise. Here we get λ′
n =

√
2
 γn,1−α

n − 1

; the approach of Section 3.2

is based on the function hX̄n (y)−hλ′
nB (y) =

√
2·Ēn ·max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ)−λ′
n, that is not a proper support function

(since it fails to be subadditive). Inverting it as if it were a support function, we get the set K ′
n = X̄n ⊖

√
2
 γn,1−α

n − 1

B =

X̄n ⊖
√
2
 γn,1−α

n − 1

H (whose support function is hX̄n⊖λ′

nB
(y) =

√
2 ·

Ēn − λ′

n


· max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ)). Using

the formulas for λ′
n and λ′′

n introduced above in the support function case, it is simple to see that the internal set based on
B = B is smaller than the one based on B = H .

Figs. 4.1 and 4.2 provide a graphical illustration in the spirit of Ghosh and Kumar (1998) of the confidence sets based on
the support functions. To simplify, we take n = 10 and we suppose that X̄n = H: the choice of n = 10 is due to the fact that
larger values of n yield smaller confidence sets that would not be easy to distinguish in the figures; the choice of X̄n = H
is simply a convenient one, but it is clear that in applications X̄n would be the Minkowski mean of a sample of sets. Fig. 4.1
provides an illustration of the two confidence sets based on the ball B = B. The quantities λ′

n and λ′′
n are given, as above,

by λ′
n =

√
2 ·
 γn,1−α

n − 1

and λ′′

n =
√
2 ·

1 −

γn,α
n


. In the upper (lower) left quadrant of the graph, we represent the set

λ′′
nB = λ′′

nB (λ′
nB = λ′

nB) centered at (1, 1) as a grey filled ball, the outline of the set X̄n = H as a solid black line, the outline
of the 95% external (internal) confidence set X̄n ⊕λ′′

nB as a dashed black line and the outline of the largest (smallest) possible
EX contained in (containing) the confidence set as a solid thin grey line. In the upper (lower) right quadrant we represent
the support function hX̄n of the set X̄n = H as a solid black line, the support function hX̄n⊕λ′′

nB
(hX̄n⊖λ′

nB
) of the 95% external

(internal) confidence set X̄n ⊕ λ′′
nB (X̄n ⊖ λ′

nB) as a dashed black line, and the support function of the largest (smallest)
possible EX contained in (containing) the confidence set as a solid thin grey line; moreover, in the lower quadrant, we also
represent the function hX̄n − λ′

n (that is not a proper support function) as a dashed grey line. Fig. 4.2 represents the same
quantities when B = H . As above, the quantities λ′

n and λ′′
n are given by λ′

n =
γn,1−α

n − 1 and λ′′
n = 1 −

γn,α
n . Remark that

here there is no difference between the external (internal) confidence set and the largest (smallest) possible EX contained
in (containing) it.

Now we outline the derivation of the quantiles in the two-sided case. We only consider the construction based on the
support functions, since this is the one that is used in practice. The idea is to choose λ′

n (λ′′
n) as the quantile of an internal

(external) confidence set at level α1 (α2); here, α1 + α2 = α and the choice of α1 and α2 depends on the method. In the
following, we will see that the choice of α1 and α2 for the different methods does not depend on whether B = H or B = B,
but this does not seem to hold in general. For the two-sided symmetric case, we choose λ′

n = λ′′
n or γn,1−α1 + γn,α2 = 2n

with α1+α2 = α. In the two-sided equal-tailed case, we take α1 = α2 =
α
2 andwe simply choose λ′

n and λ′′
n as the quantiles

of the corresponding internal and external confidence sets at level α
2 . At last, for the two-sided narrowest-width confidence

set, we choose α1 and α2 to minimize λ′
n + λ′′

n; both for B = H and for B = B, this is equivalent to minimize γn,1−α1 − γn,α2
under the constraint α1 + α2 = α.

4.2. An example on real data

In this section, we compute our confidence sets on the sand grains data first analyzed in Stoyan (1997). A set of 25 sand
grains comes from the banks of the Zelenchuk River in Ossetia; the other set comes from the shores of the Baltic Sea and
is composed of 24 elements. The particles were photographed maintaining the same scale; the result is composed of two-
dimensional projections represented by binary images. The resulting images are rounded but not necessarily convex. River
grains are more elongated and smaller, sea grains appear to be more spherical and larger.

The outlines of the sand grains were represented as 50 vertices at approximately equal arc-length, as described at the
end of Section 8.1 in Kent et al. (2000). Before computing the confidence sets, the images have been realigned and scaled
using the generalized Procrustes analysis as implemented in the shapes package (Dryden, 2012) in R (see R Development
Core Team, 2011).

Fig. 4.3 shows the confidence regions at 90% based on J = 10,000 bootstrap samples obtained using B = B. We chose to
represent them at 90%, since at 95% they would be too narrow to be distinguished from the outline of the Minkowski mean.
The first two rows concern sand grains respectively from the Zelenchuk river and the Baltic sea that have been aligned
without scaling; the last two rows concern the same grains that have been aligned and scaled. The columns contain from
left to right the one-sided external, the one-sided internal, the two-sided symmetric, the two-sided equal-tailed and the
two-sided narrowest-width confidence sets. It is apparent that sets obtained on scaled sand grains are narrower than sets
obtained without scaling, since the variability of scaled and aligned sand grains is smaller. The solid black line represents
the Minkowski mean, the dashed lines represent the boundaries of the confidence regions.

4.3. Simulations

We have performed several Monte Carlo simulations. In this section, we only present graphs for a set of simulations; the
graphs for the other set and the tables with the numerical results are in the Supplementary Material.

Let X be the convex hull of 5 points in R2 (d = 2) drawn from a bivariate standard normal distribution. EX is
given by 1.1629644736 · B, the ball with radius 1.1629644736. A proof of this fact can be found in Appendix B. We take
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Fig. 4.1. Confidence sets constructed with B = B.

Fig. 4.2. Confidence sets constructed with B = H .
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Fig. 4.3. Confidence sets for the sand grains data.

n ∈ {5, 10, 20, 40, 80, 160, 320, 640} and p ∈ {5, 10, 20, 40, 80, 160, 320, 640}. For each sample, we compute λ′
n and

λ′′
n using 1000 boostrap samples. The probability that hEX is inside the confidence region is computed using J = 10,000

replications. Figs. 4.4–4.8 display the behavior of the coverage probability when n, p and α vary.
These are the main results:

1. As expected, low values of p lead to confidence bands with low coverage. This is due to the fact that, when p is small, λ′
n

and λ′′
n are biased towards zero and therefore the confidence sets tend to be smaller and more permissive.

2. Low values of n lead to confidence bands with low coverage. The same phenomenon is observed in Jankowski and
Stanberry (2012).

3. As expected, one-sided internal sets tend to be slightly more conservative than one-sided external sets.

4. For α = 0.1, 0.05, two-sided symmetric and equal-tailed sets are quite precise, while narrowest-width sets are more
permissive: this is due to the fact that λ′

n + λ′′
n is smaller for narrowest-width sets, that tend therefore to be smaller and

less conservative.

5. All one-sided and two-sided sets with α = 0.01 or 0.001 are less precise and more permissive than the ones with high
values of α, also for large n and p. This may probably be reduced increasing the number J of bootstrap resamplings, fixed
at 1000 in this simulation.

6. When the set X is far from a ball, a smaller value of pmay be needed to reach the desired precision. Indeed, if y1, . . . , yp
are the p discretization directions of hX on Sd−1, let x⋆

1, . . . , x
⋆
p be the points for which hX


yj


=

yj, x⋆

j


. The fact that these

points tend to cluster around the exposed points of Xi (see Schneider, 1993, p. 19) allows for a better description of the
set Xi exactly where the curvature of its outline is larger.

7. Despite the fact that the proposed confidence sets should be conservative, for large values of p and n the coverage level
is very near to the nominal coverage (see also Jankowski and Stanberry, 2012).
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Fig. 4.4. Coverage of one-sided external confidence sets.

Fig. 4.5. Coverage of one-sided internal confidence sets.

5. Conclusions

In this paper, we propose a general definition of confidence sets for the mean of a random closed set. Even though our
main interest is in the Aumann mean, the definition is expected to be of broader interest. It encompasses sets containing
the mean, contained in it and containing its boundary with prescribed probability.
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Fig. 4.6. Coverage of two-sided symmetric confidence sets.

Fig. 4.7. Coverage of two-sided equal-tailed confidence sets.

Then we pass to consider the Aumann mean. Despite having the drawback of always being convex, this definition of the
mean of a random closed set is still useful in many cases of interest. We express the confidence sets as parallel bodies of
the Minkowski mean with respect to a structuring element. This allows us to provide formulas for the confidence sets in
terms of support functions of the original sets. Moving from sets to support functions introduces some conservativeness
in confidence sets built in this way. Then we discuss bootstrap implementation of the algorithm. The effectiveness of the
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Fig. 4.8. Coverage of two-sided narrowest-width confidence sets.

proposed sets is shown in an illustrative example in which closed-form solutions are available, in a real data situation and
in Monte Carlo simulations.

Several points still deserve attention. First of all, moving from sets to support functions is not free from issues, since the
support function of the Minkowski subtraction of two sets is not always equal to the subtraction of the support functions of
the two sets. This seems to have a limited impact on the coverage level in our Monte Carlo experiments. On the one hand,
this is a general consequence of the convexity of the Aumann mean, as the distance between the previous two functions is
smaller for rounder sets. On the other hand, this is probably due to our choice of the simulated sets. It would be interesting
to have a procedure for building confidence sets that does not suffer from this problem and to better understand when
the proposed confidence sets are (asymptotically) exact. Second, theoretical analyses of the performance of the method
are still lacking. This seems to be a general drawback of bootstrap for functional data, of which the present case is an
instance.
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Appendix A. Derivation of λ′
n and λ′′

n for Section 4.1

First consider the case in which B = H . In this case, the external confidence set is defined by:

K ′′

n = X̄n ⊕ λ′′

nH = ĒnH ⊕ λ′′

nH =

Ēn + λ′′

n


· H.

Therefore, the equation P

EX ⊆ K ′′

n


= 1 − α can be written as

P

H ⊆


Ēn + λ′′

n


· H


= 1 − α

or P

1 − λ′′

n > Ēn


= α. Using the fact that n · Ēn ∼ Γ (n, 1) , 1 − λ′′
n =

γn,α
n and K ′′

n = X̄n ⊕

1 −

γn,α
n


H . As concerns

the internal confidence set, the reasoning is symmetric: from K ′
n = X̄n ⊖ λ′

nH =

Ēn − λ′

n


· H (this can be justified from

the fact that λ′
nH is a summand of X̄n), we get P


Ēn − λ′

n


· H ⊆ H


= P


Ēn − λ′

n ≤ 1


= 1 − α, λ′
n =

γn,1−α

n − 1 and
K ′
n = X̄n ⊖

 γn,1−α

n − 1

H . Remark that the choice B = H yields the smallest possible confidence sets for this definition of Xi.

As concerns the case B = B, we must choose a value of λ′
n and λ′′

n such that the sets K ′
n and K ′′

n contain the respective sets
with B = H . A geometric reasoning should convince the reader that this implies that λ′

n and λ′′
n should be such that λ′

nB is
contained in

 γn,1−α

n − 1

H and λ′′

nB contains

1 −

γn,α
n


H: therefore, we have λ′

n =
 γn,1−α

n − 1

and λ′′

n =
√
2

1 −

γn,α
n


.
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Now, we turn to the confidence sets based on the support function. We recall the formulas:

α = P

inf
y


hX̄n − hEX

hB


< −λ′′

n


,

1 − α = P

sup
y


hX̄n − hEX

hB


≤ λ′

n


,

respectively for the quantiles of the external and internal set. If we take B = H , we use the previous formulas for
hX̄n , hEX and hH =

√
2 · max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (x − θ), and we get α = P

Ēn − 1 < −λ′′

n


and λ′′

n = 1 −
γn,α
n , and

1 − α = P

Ēn − 1 ≤ λ′

n


and λ′

n =
γn,1−α

n − 1. On the other hand, if we take B = B, we have hB = 1 and:

α = P

inf
y

√
2

Ēn − 1


· max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ)

 < −λ′′

n

 .

Now:

inf
y

√
2

Ēn − 1


· max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ)

 = min
√

2

Ēn − 1


,

Ēn − 1


.

Provided α is small enough:

α = P

min

√
2

Ēn − 1


,

Ēn − 1


< −λ′′

n


= P

√
2

Ēn − 1


< −λ′′

n


= P


Γ (n, 1) < n ·


1 −

λ′′
n

√
2


,

where we have used the fact that n · Ēn ∼ Γ (n, 1). At last, we get n

1 −

λ′′
n√
2


= γn,α , from which λ′′

n =
√
2

1 −

γn,α
n


. As

concerns the internal set, we have:

sup
y

√
2

Ēn − 1


· max

θ∈


π
4 , 3π4 , 5π4 , 7π4

 cos (y − θ)

 = max
√

2

Ēn − 1


,

Ēn − 1


.

Provided α is small enough, n


λ′
n√
2

+ 1


= γn,1−α and λ′
n =

√
2
 γn,1−α

n − 1

.

Appendix B. Derivation of the Aumann mean for Section 4.3

Let X be the convex hull of 5 points {x1, . . . , x5} in R2 drawn from a bivariate standard normal distribution. In this
appendix, we show that EX is given by 1.1629644736 · B, the ball with radius 1.1629644736. Indeed, pick any direction
y ∈ S1. From Proposition 5 (b) in Ghosh and Kumar (1998), hX (y) = max1≤i≤5 h{xi} (y) = max1≤i≤5 ⟨xi, y⟩. Since the 5 points
are drawn from a bivariate standard normal distribution, hX (y) is the maximum of 5 iid standard normal random variables
and EhX (y) is the expected value of the largest order statistic from such a sample, i.e. 1.1629644736 (see Teichroew, 1956).
This shows that hEX is constant. Since EhX = hEX , hEX is constant and EX is convex, EX is a ball of radius 1.1629644736.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2012.10.015.
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