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ESSENTIAL INTERSECTION AND APPROXIMATION RESULTS
FOR ROBUST OPTIMIZATION

CHRISTIAN HESS*, RAFFAELLO SERI, AND CHRISTINE CHOIRAT

ABSTRACT. We examine the concept of essential intersection of a random set in
the framework of robust optimization programs and ergodic theory. Using a re-
cent extension of Birkhoft’s Ergodic Theorem developed by the present authors, it
is shown that essential intersection can be represented as the countable intersec-
tion of random sets involving an asymptotically mean stationary transformation.
This is applied to the approximation of a robust optimization program by a se-
quence of simpler programs with only a finite number of constraints. We also
discuss some formulations of robust optimization programs that have appeared in
the literature and we make them more precise, especially from the probabilistic
point of view. We show that the essential intersection appears naturally in the
correct formulation.

1. INTRODUCTION

Given a probability space (€,.4,P), a metric space E and two extended-real-
valued functions f: QX E — R and h : F — R, consider the optimization problem:

(1.1) minh (x) subject to f(w,z) <0 forall we Q.

If ' is a finite dimensional Euclidean space and if €2 is infinite, the problem involves
a finite number of unknowns under an infinite number of constraints, which justifies
the name of semi-infinite programming that is often given to this kind of problems
(see, e.g., [18,23]). A natural situation where such a program finds application is
for designing optimal solutions that are robust against uncertain events, subsumed
under the parameter w. As an example, it is possible to show that semi-infinite
programs encompass minimax problems, in which the decision maker has to select
the best strategy in response to the worst possible situation (see, e.g., [30] for the
relation between minimax and semi-infinite programs). Another situation strictly
linked to the present one arises in robust feasibility problems, whose objective is to
find = € E such that f (w,z) <0 for any w € Q. The field is also known under the
alternative name of robust optimization (see [4,5]). In the sequel we shall use this
second name.

Despite having been in use for a long time when w is a random element of a
probability space (€2, A, P), the formulations customarily discussed in the literature,
among which (1.1), are not satisfactory from a probabilistic point of view and need
to be made more precise. In fact, due to the random nature of w in (1.1), the
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constraints f(w,z) < 0 need not be satisfied for all w € Q, but only on a subset
of probability one. One objective of the present paper is to explain this point
and to provide alternative correct formulations (see Remark 5.2). This requires
some concepts from the theory of random sets and, in particular, that of essential
intersection. We provide a quick presentation of this object, the needed properties
and a few examples. Then, we establish a representation formula for the essential
intersection, which is the main result of this paper. In turn, the above formula is
used to establish several results on the scenario approximation of robust programs.

As robust stochastic optimization problems require optimizing a function on the
intersection of an infinite collection of sets and are notoriously difficult to deal with,
it is customary to make recourse to approximate solutions. These are often obtained
by replacing the original set of constraints with the intersection of a finite number
of sets extracted from the previous infinite collection (see among others [24-26,
29]). These methods are sometimes called outer approzimation or discretization
methods. We examine this kind of problem and we show that, under suitable
conditions, the original problem can be approximated through the optimization of
the objective function on the intersection of a finite collection of sets, sampled from
an asymptotically mean stationary (in the following, ams) stochastic process. This
is useful because the collection of ams processes (see, e.g., [12]) is the largest class
of stochastic processes for which it is possible to prove a Birkhoff-type Ergodic
Theorem (see [17]). This makes possible, in practical computations, to replace the
original infinite set of constraints with only a finite number of them associated with
real data, that often display dependence and local nonstationarity. It is well-known
that the Strong Law of Large Numbers can be deduced from the Birkhoff-Ergodic
Theorem. However, our approximation results can be adapted, not only to the case
of independent identically distributed (i.i.d.) observations, but also to the case of
pairwise independent identically distributed observations (see Remark 5.13). On
the other hand, our results are valid in infinite dimensional Banach spaces, which
can be useful for dealing with optimization problems on functional spaces (e.g.,
Calculus of Variations, Optimal Control, ...). There are versions in the strong
topology and in the weak topology.

The paper is organized as follows. In Section 2 we set the notation and introduce
the needed preliminaries. In Section 3 we provide several results on essential inter-
section. Most of them are required later. There is an exception with Theorem 3.16
that involves the notion of image measure. We think that this result is important,
because it serves in robust optimization when image measures are involved and one
has to switch between two probability spaces. The main result of Section 4 is The-
orem 4.1 that gives a representation formula for essential intersection in the frame-
work of ams dynamical systems. A short discussion follows as well as applications
and examples. In the first part of Section 5, we explain why the notion of essential
intersection is needed to give an appropriate formulation of robust optimization pro-
grams. In the second part, using the representation formula of Section 4, we prove a
result on the stochastic approximations of robust optimization problems (Theorem
5.3). This result admits several extensions or variants. In particular, we present
an extension involving the weak topology in an infinite dimensional Banach space
and another for sequences of measurable selections. Finally, we briefly examine the
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stochastic approximation of optimization problems when the constraints are given
by an i.i.d. sequence of random lower semi-continuous functions. This situation is
a special case of stationary sequences and is often encountered in applications. In
a final remark, we explain why our results are also adaptable to the more general
case of pairwise i.i.d. observations.

2. DEFINITIONS AND PRELIMINARIES

In this section we set the notation and terminology and we compile some basic
facts that mainly concern Ergodic Theory and the theory of Random Sets.

In the sequel, E generally denotes a Polish space.! When a linear structure
is needed, FE is assumed to be a separable Banach space. The topological closure
(resp. interior) of a subset C of E is denoted by cl(C) (resp. int(C)). The distance
function of C' is denoted by d(-,C) and defined by

(2.1) d(z,C) = inf d(x,y) zeC.
yeC

The open ball of radius r centered at z is denoted by B(z,r).

Given a probability space (2, A4,P), and an A—measurable transformation 7" :
Q—Q, (2,A4,P,T) is often referred to as a dynamical system. The transformation
T is said to be null-preserving if the probability PT~! is absolutely continuous with
respect to P, which is denoted by PT~! <« P. The transformation 7T is said to be
measure-preserving if P (T_IA) =P(A) for all A € A. Equivalently, PP is said to be
stationary with respect to T'. We also say that T preserves the P—measure. The
sets A € A that satisfy T~ A = A are called T—invariant sets (or simply invariant)
and constitute a sub—o—field Z of A. The notion of P—almost surely invariant set
is also useful. The class of these sets constitutes a o—field which is equal to the
P—completion of Z. A measurable and measure-preserving transformation 7" is said
to be ergodic if P(A) = 0 or 1 for all invariant sets A. Equivalently, the sub—o—field
7 reduces to the trivial o—field {2,0} (up to the P—null sets).

The probability PP is said to be asymptotically mean stationary (ams) with respect
to T if the sequence % Z?:_& P (T~7A) is convergent for all A € A. From the Vitali-

Hahn-Saks Theorem, it is known that ht}rl % Z;‘;& PT—7 is a probability measure
n—-+00

denoted by P* and referred to as the asymptotic mean of P. The probability P*
is stationary with respect to T" and coincides with P on invariant sets. Further, it
is not difficult to prove that PP is ams if and only if for each bounded real-valued
random variable X the limit

n—1
lim = X (T'w)
1=0

exists for P—almost all w € Q (see, e.g., [21, Theorem 4.10]).

Given a dynamical system (Q, A,P,T) and A € A, a point w € § is said to be
recurrent with respect to A if there exists a positive integer n such that 7w € A. An
event A having a positive probability is said to be recurrent if almost every point of

1A Polish space FE is a separable topological space whose topology can be given by a metric for
which F is complete (in particular a Euclidean space is Polish).
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A is recurrent with respect to A. A dynamical system is said to be recurrent if every
event is a recurrent event. It is also said that the transformation 7T is recurrent.
The notion of infinitely recurrent event and infinitely recurrent dynamical system is
also useful. Given A € A the set of all w that return in A infinitely often (denoted
by i.0.) is denoted by A;, and defined by

Ay = ﬂ U T kA,

m>0 k>m
The transformation T is said to be infinitely recurrent if for all events A, one has
P(A\ A;,.) = 0. By the Poincaré Recurrence Theorem, every stationary dynamical
system is recurrent. Further, it is known that a dynamical system (Q, A,P,T) is
recurrent if and only if it is infinitely recurrent (see, e.g., Theorem 6.4.2 in [13]).

A real-valued random variable X is said to be quasi-integrable if either EX T or
EX ™ is finite, where X = max{X,0} (resp. X~ = max{—X,0}) stands for the
positive (resp. the negative) part of X. For any A € A, the (probabilistic) indicator
function of A is denoted by 14 and defined by 14(w) = 1 if w € A, 0 otherwise.
Another kind of indicator function for subsets of E will be introduced below.

The following result is contained in [17] (Theorem 3). It extends the Birkhoff
FErgodic Theorem in two directions. Firstly, it is valid for quasi-integrable extended-
real-valued random variables under stationary, but not necessarily ergodic, trans-
formations. The random variables may even take infinite values on a set of positive
measure. Secondly, it is also valid in the case of ams transformations. This result
will be used in Section 4 for proving our result on the representation of the essential
intersection (Theorem 4.1). We shall only need the ergodic case.

Theorem 2.1. Let (Q, A,P, T) be an ams ergodic dynamical system with asymptotic
mean P* and X be an extended-real-valued random variable defined on (2,.A). Also
assume that X is P*—quasi-integrable. Then, for P and P*—almost every w € Q,
one has
‘ 1 n—1 . N
nlg%oniZ;X(Tw) =FE* (X),

where each side can be equal to +00 or —oo, and where E* (X) denotes the expec-
tation taken on (2, A,P*).

Remark 2.2. In the classical version of Birkhoff’s Ergodic Theorem (see, e.g., [7]
r [21]), P is assumed to be stationary with respect to T and X is assumed to be
P—integrable. When P is stationary one has P = P* and thus E* (X) = E (X).

Now we recall some basic facts on random sets. Given a Polish space F, the set
of all subsets of E is denoted by 2F. Basically, a random set is a set-valued map
I' : Q — 2% having some sort of measurability property. Here, we shall use graph
measurability. The graph of I' is denoted by Gr(I') and defined by

Gr(l') ={(w,z) e A x E: 2z €T'(w)}.

In this framework, T is said to be a random set if Gr(T") is a member of the product
o-field A ® B(E). Equivalently, I' is said to be graph-measurable. Other synonyms
for random sets are encountered such as ‘measurable set-valued map’, ‘measurable
multifunction’ or ‘measurable correspondence’. From the definition, it follows that
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the countable intersection and the countable union of random sets is still a random
set. In the sequel, we mainly consider closed-valued random sets, also called random
closed sets. We need the following characterization (see, e.g., [1], [16] or [22]).

Proposition 2.3. Let E be a Polish space and T' : Q — 2F be a set-valued map.
Consider the following two statements.

(a) Gr(T') € A® B(E), i.e., I is a random set.

(b) For every open subset U of E, the set T~ U defined by

IMv={weQ:T(w)NU # 0}

is a member of A.

If T is closed-valued then implication (b) = (a) holds. Conversely, provided
A is replaced by Ap (the P—completion of A), implication (a) = (b) also holds.
Consequently, if T' is closed-valued and A is complete, statements (a) and (b) are
equivalent.

Let us present two examples of random sets that shall be used several times in
the sequel. Given an extended-real-valued function ¢ : E — R, the epigraph (or
upper graph) of ¢ is denoted by epi(¢) and defined by

(2.2) epi(¢) = {(z,a) € E xR : p(x) < a}.
For any real 3, the level-set of ¢ at height § is denoted by L(p, ) and defined by
(2.3) L(p,B) ={x € E: p(x) < B}

When ¢ is lower semi-continuous (in short Isc), epi(yp) and L(p, ) are closed. These
sets are convex when FE is a Banach space and ¢ is a convex function. Given an
A® B(E)—measurable function f : Q x E — R and a real 3, we define the set-valued
maps A and I'g by

(2.4) A:w—epi(f(w,) ={(z,a) e ExR: f(w,z) < a},

(2.5) Ipw) = L(f(w,"),8) ={x € E: f(w,z) <5}

These maps are readily seen to be random sets (where A takes on its values in the
Polish space E' x R). A is often called the epigraphical multifunction associated
with f and I'g is called the level-set multifunction (at height ) associated with f.
When f(w,-) is Isc (resp. convex) for P—almost all w € Q, f is often referred to as
a random Isc function (resp. a random convez function).

A short review on the Painlevé-Kuratowski convergence (in short P K —convergence)
is also in order (see, e.g., [1] or [3]). Given a sequence (C),),>0 of subsets of E, its
lower limit and its upper limit are respectively denoted by LiC), and LsC, and
defined by

LiC,={z€eFE:x2= lim z,,z,€C, VYn}
n—-+0o
LsCp={x€eFE:x= lim a, x,€C,, Vk}
k—4-00
where (Cy, )r>0 denotes an infinite subsequence of (Cy,). These two sets are closed
and the inclusion Li C,, C Ls C), easily follows from the definition. If Li C,, = Ls C,
and if C' denotes the common value, the sequence (C,) is said to PK—converge to
C. This is denoted by C = PK — lim,, C,,. In particular if the sequence (C),) is
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nonincreasing and if we set C' = ), cl(Cy), one has ¢ = PK — lim,, C,,. When
the C),,’s are compact, the convergence also holds in the sense of Hausdorff distance
(see, e.g., [3]).

We need another notion of indicator function, different from the one that we
have introduced above in the framework of a probability space. It characterizes
subsets of F, and is often used in Optimization Theory and Convex Analysis (see,
e.g., [27]). The context will allow for avoiding any ambiguity. For any subset C of
E, the (convex analysis) indicator function of C' is denoted by x¢ and defined for
any * € E by xc(x) =0if z € C, xc(z) = +o00 otherwise. For any pair (C1,C2) of
subsets, the following equalities hold true

(26) XCﬂ_]Cz = Sup(XCpXCQ) = XC1 + XCQ and XCluCQ = inf(XCUXCz) .

The extension to any finite sequence of subsets is straightforward. This second kind
of indicator function is convenient to express properties concerning random sets.
For example, a set-valued map I' : Q — 2F is graph-measurable (i.e. is a random
set) if and only if the function (w,z) = Xp()(z) is A ® B(E)—measurable. It
is also convenient to express constraints appearing in optimization problems (see,
e.g., [27]). Formula (4.1) in Section 4 will show another useful example.

3. ESSENTIAL INTERSECTION

In this section we introduce the notion of essential intersection, which is defined
for a random set whose values are subsets of a Polish space E. The term ‘essential’
is used by analogy with the essential infimum or essential supremum of a random
variable in Probability Theory (see, e.g., Example 3.12). This concept seems to
have been introduced by Hiriart-Urruty [20] in view of applications to stochastic
optimization. Essential intersection is useful to characterize properties of random
sets that are satisfied almost surely. We present its most relevant properties in
connection with our goals, as well as a few examples.

3.1. Definition and elementary results. Let I' be a random set defined on the
probability space (2, 4,P) and Np be the set of P—null sets. The essential inter-
section® of I with respect to (€2, A, P) is the subset of E, denoted by A(I") or Ap(I'),
and defined by

(3.1) ANIT)={z€e EF:zel(w), P—a.s.}.

Thus, z is a member of A(I') if and only if z € I'(w) for P—almost all w € 2. More
precisely, we can write

(3.2) D)= |J I(T,N)
NeNp

where, for every N € Np, the set I(I', N) is defined by

(3.3) IT,N)= (] Tw).

we\N

21t is sometimes called the ‘continuous’ intersection, in reference to the case where the probability
space is nonatomic.
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A simple and useful property is given by the following implication, valid for all
N1, N2 € Np,
N1 C Ny = I(F,Nl) - I(F,NQ)

Example 3.1. Observe that the sets I(I', N) may be much smaller than A(T"). For
example, consider the case where Q = E = [0, 1], the unit interval endowed with
the Lebesgue measure P. If we define the random set I' by I'(w) = E \ {w}, it is
readily checked that A(I') = E, whereas I(I', N) = N for every P—null set N.

Remark 3.2. (Essential intersection and null sets). (i) If the random set I' is
modified on a P—null set, the essential intersection is unchanged. Moreover, the
essential intersection does not depend explicitly upon the probability P, but rather
on the set Np of all P—null sets. Consequently, the essential intersection is not
modified if one replaces P by an equivalent probability measure.

(ii) Given two probability measures P; and Py on (Q,.4), if Py is absolutely
continuous with respect to Pg, it follows that NMp, C Ap,, which in turn implies
AP, (P) C Ap, (F)

Remark 3.3. Essential intersection is stable by countable intersection of random
sets: it follows from the definition that if (I'y);>0 is a sequence of random sets and
if I' is defined by I' = (5 Tk, then A(T") = (50 A(Lk)-

Remark 3.4 (Sufficient subfamilies of null sets). In (3.2) it is often enough to
take the union over a strict subfamily of Np. The following notion will be useful.
A subfamily Ny of Ap is said to be sufficient in Np (for computing the essential
intersection of I') if for each N € Np there exists Ny € Ny such that I(I', N) C
I(T", Np). In this case, the equivalent formula is valid

A= | I(T,N).

NeNy

The notion of sufficient subfamily of null sets is convenient and will be used several
times in the sequel.

It is interesting to know when properties of I' are transmitted to A(I'). The
following simple result provides two examples.

Proposition 3.5. (a) Let E be a Polish space. If T' is closed-valued, then the
essential intersection N(I') is closed.

(b) If E is a separable Banach space and if I' is convex-valued, then A(L') is
convex.

Proof of (a). Consider a sequence (zj)r>1 in A(I') and assume that it converges to
x € E. For each k > 1, one can find a null set Ny € Np such that 2 € I(T, Ni).
If we define the null set N by N = (J;~; Nk, then we have x5, € I(I', N) for all
k > 1. Since I(I', N) is the intersection of closed sets, it is closed, which entails = €
I(I', N) C A(T") and proves the closedness of A(T"). The proof of (b) is similar. [

Using the same kind of arguments, it is possible to show that if I'(w) is compact
for P—almost all w, then A(T") is compact. Moreover, a stronger result holds true
as the following proposition shows.
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Proposition 3.6. If T is a closed-valued random set satisfying Condition (K) here-
after:

(K) there exists Ay € A of positive measure such that I'(w) is compact for all
w € Ay,

then A(I") is compact.

Proof. Consider a sequence (zx)i>1 in A(I') and define By € A by
BQI{MEQi&IkGF(w) Vk21}

It is readily checked that P(Bp) = 1, which implies P(Ay N By) = P(Ap) > 0 and
shows that AgN By is nonempty. By Condition (K), for any w € AN DBy, it is possible
to find a subsequence (xy,) of (x;) and x € I'(w) such that = lim; 4o zy,. By
Proposition 3.5 (a), A(T") is closed, which implies = € A(T"). O

In the framework of ams ergodic dynamical systems, condition (K) implies the
compactness of I'(T"w) for infinitely many indices.

Proposition 3.7. If (0, A,P,T) is an ams ergodic dynamical system with asymp-
totic mean P* and I" is a random set satisfying condition (K), then I'(T"w) is com-
pact for infinitely many indices 1.

Proof. Since P* is stationary with respect to T, Poincaré’s Recurrence Theorem
implies that P*—almost every point of Ay is recurrent, whence infinitely recurrent.
Thus, the following inclusion holds up to a P*—null set:

Ao C By Y m U T~ (Ao).
m>01>m
It is readily checked that By is invariant, which implies P(By) = P*(By). Further,
P(By) is positive by condition (K). This entails P(By) = 1, because T is ergodic
with respect to P. O

If the values of I' are open it cannot be deduced that A(I') is open. This is
true only when A is finite. However, it immediately follows from the definition
that if there exists an open ball B(x,r) such that B(z,r) C I'(w) P—a.s., then
B(z,r) C A(I'). Conversely, when A(I') has a nonempty interior and I' is closed-
valued, the following proposition shows that I'(w) has a nonempty interior for almost
all w € Q. This result will serve in the proof of Theorem 4.1.

Proposition 3.8. If the values of I' are closed and if the open ball B(x,r) is con-
tained in N(I'), then this ball is contained in I'(w) for P—almost all w € Q.

Proof. 1t suffices to show that it is possible to find a null set N such that B(z,r) C
I(I', N). Let D be a dense countable subset of E. For all y € D N B(z,r) there
exists a null set IV, such that y € I(I', Ny). Defining the null set NV by

N= |J N,
yeDNB(z,r)
it is easily checked that
B(z,r) C (DN B(z,r)) CI(I,N) C AD).
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Remark 3.9 (A counterexample). In Proposition 3.8, the closedness of the val-
ues of I' is necessary as the following counterexample shows. Consider £ = R,
2= (0,1) (the open unit interval) endowed with the Lebesgue measure P, and the
multifunction I' defined by

INw)=(0,1) \ {w} we Q.
Observe that the interval (0,1) is equal to the open ball of radius 1/2 centered at
1/2 in FE and, on the other hand, that the values of I" are not closed. For every
N € Np, one has I(I', N) = N, which yields A(T") = (0,1). Clearly, the inclusion
(0,1) C I'(w) is false for all w € Q.

Remark 3.10 (A more general definition). (i) In the definition of the essential
intersection, the set {2 can be replaced with any subset A € A of positive measure.
In this case, we use the notation

(3.4) AN, A) = N
NENP(A) weA\N

where Np(A) = {N € Np : N C A} is the set of P—null sets that are contained in
A. Clearly, this defines the essential intersection of I" with respect to the probability
space (A, Aa,P4), where Ay = {B € A: B C A} and P4 is the restriction of P
to A4, namely P4(B) = P(B)/P(A) for all B € Ay. We say that A(I', A) is the
essential intersection of I" on A. A useful example is given by Proposition 3.11

(i) Since A\ N = A\ (ANN) for all N € Np, (3.4) admits the equivalent

expression
(3.5) A= N
NeNp weA\N
(iii) The following implication immediately follows from (3.5)
Ay C A — /\(F, Ag) - /\(F,Al).

(iv) For example, if the random set I' is single-valued, i.e. reduces to a random
variable X : Q — FE (by identifying X (w) with the singleton {X(w)}), then given
A € A, one has A(X, A) # 0 if and only if X is almost surely constant on A. If the
constant is denoted by xo then A(X, A) = {zo}.

Assume that €2 is a metric space endowed with its Borel o—field A = B(€2) and
that A = S, where S = supp(PP) denotes the support of P, namely the smallest
closed set of €2 with full P—measure. In this case, a more precise expression of the
essential intersection of I' can be given.

Proposition 3.11. Under the above hypotheses, one has

(3.6) AT) = AT, S).

Proof. If N is a P—null set, so is N U S¢, which implies that
N ={NUS°: N e Np}

is a sufficient subfamily of AVp (see Remark 3.4). Thus,

o= U ) Tw= U (l Tw)

MeN: weQ\M NeNp weQ\(NUS©)
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= U N Tw=nam>s).

NeNp weS\N
O

Example 3.12. Let E still denote a Polish space. Consider an A ® B(E)—function
f:Qx E — R and the set-valued map A : w + epi(f(w,-)) as in (2.4). Also
consider the function ¢ : E — R defined for every x € E as the essential supremum
of the random variable f(-,z). It is known that g(x) is the infimum of the set
of real numbers « satisfying P{w € ©Q : f(w,z) > a}) = 0. This is denoted
by g(z) = ess.supf(-,x). It is not difficult to check that the epigraph of g is the
essential intersection of the random set A, namely

(3.7) A(A) = epi(g).

Thus, the epigraph of the essential supremum is the essential intersection of the
random set A. Also observe that A(A) # ) if and only if ¢ is not identically +oo.
Further, if ¢(w,-) is Isc for P—almost all w € €, then the random set A is a.s.
closed-valued. Thus, Proposition 3.5 (a) shows that A(A) is closed, which implies
that g is Isc. Similarly, by Proposition 3.5 (b), if E is a separable Banach space and
if p(w, -) is convex for P—almost all w € Q, then g is convex.

The following result concerns the inf-compactness of g. Recall that a function
¢ : E — Ris said to be inf-compact if for every real /3, the subset {z € E : p(z) < 5}
is compact.

Proposition 3.13. Let f be a random Isc function. If there exists Ag € A of
positive measure such that f(w,-) is inf-compact for P—almost all w € Ag, then g
is inf-compact. Further, if (Q, A,P,T) is an ams ergodic dynamical system, then
f(T'w,-) is inf-compact for infinitely many indices 1.

Proof. For each real § consider, as at (2.5), the random set I'g given by

(3.8) I'g(w)={r e E: f(w,z) < B}

One has g(x) < § if and only if there exists a P—null set N such that
flw,z) <pB Yw e Q\ N

which yields

(3.9) NIg) ={z € E: g(z) < B}.

In view of the hypothesis, I'g satisfies Condition (K) of Proposition 3.6. Thus,
A(I'g) is compact, which implies the inf-compactness of g. The second statement
follows from Proposition 3.7. 0

Example 3.14. Let E be a separable Banach space. It is known (see, e.g., [1,
Section 7.1]) and easy to check that a convex cone C such that C N (—=C) = {0}
allows for defining an order relation < on E, namely for any pair (z,y) € E?, one
has

r<cy <= y—xecC.

Consider the following two examples.
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(i) Given an EF—valued random variable X, define the random set I' by
Nw)=X(w)+C w € Q.

Then, it is not hard to see that the essential intersection of I' is the set of upper
bounds of X with respect to <o and that the following equivalence holds

AT) £ — X is a.s. bounded from above with respect to <¢ .

Equivalently, one can find xy € E such that X (w) <¢ zo for P—almost all w € Q.
In particular, when £ = R and C = [0, +00), the order relation <¢ reduces to <,
the usual order relation on the set of reals. Then, A(I') is nonempty if and only if
X is a.s. bounded from above by some real x.

(ii) Given a subset F' C E, a member z of F' is said to be mazimal with respect
to <¢ if there exists no y in F such that x <g y and y # x or, equivalently, if
FNC = {x}. Further, let © : Q — 2F be a random set. It is not hard to check that
x is maximal in A(©) if and only if x is maximal in O(w) for P—almost all w € Q.
This concept is useful when one studies equilibria in Mathematical Economics and
Game Theory (see, e.g., [19], [2]).

3.2. Essential intersection and image measure. In many situations, a first
random set, say I, is defined on some probability space and a second random set A
is defined by composing I with a random variable Y. In such a situation, it is much
useful to elucidate the connection between the essential intersection of I' and that
of A. More precisely, let Y : Q@ — E be a random variable defined on (€2, A, P) and
I': E — 2% be a random set defined on the measurable space (E, B(E)), where F
stands for another Polish space endowed with its Borel o—field B(F'). Also consider
the composed random set A defined by

(3.10) Alw) =T(Y(w)) w € €.
Further, denote by Py the image (or pushforward) measure of P by Y. It is defined
b
’ Py(B)=P(Y }(B)) BeB(E).
Recall that Y ~!(B) denotes the preimage of B by Y, namely
Y (B)={weQ:Y(w) e B}
At this point, we need a technical hypothesis (TH) that reads as follows
(TH) For any P—null set M C © one has

(3.11) PlY ~(Y(M))] = P(M) = 0.
Remark 3.15. (i) Hypothesis (TH) can be also formulated by
(3.12) M eNp <Y (M) € Np,.

(ii) As to (3.11), observe that the inequality

(3.13) B[Y—L(Y (M))] > B(M).

is always true. It follows from the inclusion M C Y ~1(Y(M)). Similarly, in equiv-
alence (3.12), the implication <= is always true.

(iii) Hypothesis (TH) will hold if the random variable Y : Q — E is one-to-one
(injective). This is not very restrictive, because if Y is not one-to-one it is possible
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to replace (92, .4,P) by another probability space (', A,P’) and Y : Q — E by
another random variable Y’ : Q' — F so that Y and Y’ have the same distribution
on (E,B(E)), and Y’ is one-to-one. Indeed, it is enough to choose £’ as the quotient
set of () with respect to the equivalence relation R defined by w; R ws if and only
if Y(wy) =Y (w2). If we define class(w) by

class(w) = {w' € Q: wRW'}
then the random variable Y’ can be defined by

Y/ (class(w)) = Y (w).

It follows from the definition that this defines Y’ without ambiguity and that Y is
one-to-one.

The following result shows the connection between the essential intersection of
I' with respect to (€2,.4,P) and the essential intersection of A =T1" oY (defined at
(3.10)) with respect to (E,B(E),Py).
Theorem 3.16. Under Hypothesis (TH), one has
Ap(A) = Apy (T).
Proof. Tt is convenient to use the notation Q = Py. For each M € Np, one can
find N € N such that M C Y~}(N). Indeed, it is enough to choose N = Y (M),

which is a member of Ny by (TH) and Remark 3.15 (i). Thus, the family Y (Np) =
{Y(M) : M € Np} is sufficient in Ng (see Remark 3.4), whence

@)= N Aaw=U N T w)
MeNp weQ\M NeNg weQ\Y—1(N)
Letting y = Y (w) we get

re(d)= | () T =nred)

NeNy yeE\N

4. A REPRESENTATION FORMULA

In this section we present a representation formula for the essential intersection
as well as some applications.

4.1. Statement of the representation formula. Given a random set I' : (2 —
2F it follows from the definition that the (convex analysis) indicator function of
A(T') evaluated at = € E is the expectation of yr(x) with respect to probability P,
namely

(4.1) xXar) (@) = Exr(-)(z) = /Q Xr(w) (7)P(dw) z€E.

The following result provides a representation formula for the essential intersection
in connection with ams transformations. It shows that the essential intersection of
I" is almost surely equal to the random set Ily defined by

(4.2) M(w) = [T(Tw) we,

>0
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Theorem 4.1. Let E be a separable Banach space, (2, A,P,T) be a dynamical
system, I be the sub—o—field of T—invariant subsets and I' : Q — 2F be a random
set. Also assume the following conditions.

(a) On (92, .A), the probability P is ams with respect to T, with stationary mean
P,
(b) Z={Q,0} (i.e. T is ergodic),
(¢) T is null-preserving,
(d) the values of T are nonempty, closed and convez,
(e) Ap(T) (in short A(T')) is nonempty.
Under the above hypotheses the following equality holds
(4.3) A(T) = Hp(w) P — a.s. (and P*) — a.s.

where N*(I') = Ap«(I") denotes the essential intersection of I' taken on (2, A, P*)
and 11y is defined by (4.2).

Remark 4.2. Theorem 4.1 shows that the essential intersection of a random set
I" can be expressed as a countable intersection depending on w and involving the
values of I at T'w (i > 0), where T : Q — Q is a given null-preserving measur-
able transformation. However, the values of the random set IIy may be difficult
to evaluate, because this random set involves an infinite sequence of subsets. It
is thus useful to look for an approximation of Ily by a finite intersection of the
form IL,(w) = (N>, [(T'w). According to the results recalled in Section 2, the
approximation holds in the sense of Painlevé-Kuratowski. More precisely, one has
IIy(w) = PK — limy,— 400 I, (w) for P—almost w € Q. As recalled in Section 2 the
convergence also holds in the sense of Hausdorff distance when I is compact-valued.

Remark 4.3. Following Remark 3.2 (i), when P and P* are equivalent, i.e. when
Np = Np+, one has

(4.4) (D) = A(D),

so that the representation formula is also valid for A(I'). Equality (4.4) holds in
particular when P is stationary with respect to T, because the probabilities P and P*
coincide. In view of Condition (c), another situation where (4.4) holds is when T is
invertible ( [13, Corollary 6.3.2]). Otherwise, Equality (4.4) may be false. However,
the inclusion Mp C Np+ remains true, because T is assumed to be null-preserving.
Thus, the inclusion Ap(I") C Ap+(I') holds, which entails

(4.5) Ap(T') C IIp(w) P —a.s. (and P*) — a.s.

4.2. Examples. Let us explain how Theorem 4.1 can be applied in the situations
of Examples 3.12 and 3.14.

Example 4.4. Continuation of Example 3.12. Assume that it is possible to apply
Theorem 4.1 to the random set A : w — epi(f(w, )) In particular, assume that
g is not identically 400 and that f(w,-) is Isc and convex for P—almost all w € Q.
This yields, for P (and P*)—almost all w € Q,

epi(g) = [ | A(T"w) = () epi f(T"w, ")

m>0 m>0
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or, equivalently,

(4.6) g(x) =sup f(T"w, ) r e L.
m>0
Remark 4.2 applied to the random set A shows that the function z +— g(z) =
SUpP,,,>0 f (1w, ) can be approximated by a finite supremum of the following form
fm(w,z) = sup f(T'w, z) rek m > 1.
<m

The quality of the approximation will be good provided m is large enough.

Example 4.5. Continuation of Example 3.14 (i). Applying Theorem 4.1 to the
random set I' produces the following equalities, valid for P—almost all w € €,

A (T) = ﬂ NT"w) = ﬂ <X(me) + C).
m>0 m>0
The right-hand side involves the set of upper bounds of X (7™w) for m > 0 with
respect to the order relation <¢. As in Example 4.4, Il;,(w) = (;<,, (X(T'w)+C)
can provide a good approximation of A*(T).

4.3. Proof of Theorem 4.1. In the proof, D (resp. D’) denotes a dense countable
subset of E (resp. A*(I')). In particular, we have A*(T") = cl(D’). We proceed in
three steps. In the first two steps we assume that A(I') has a non empty interior.
In Step 3, it is shown that this condition can be removed.

Step 1. Let us show that IIp(w) has a nonempty interior for P—almost all w € Q.
By hypothesis, one can find an open ball B(x, ) such that B(z,r) C A(T"). Consider
the set

Ay ={w e Q: B(x,r) CT'(w)}.
It can be written as the countable intersection
(4.7) A= () {weQ:yel(w)}
yeDNB(z,r)
because one has B(z,r) C cl(D N B(x,r)) C I'(w) for all w € Ag. Further, recalling
that Gr(I') € A® B(F) and appealing to a standard result on product measurable
spaces, it is readily seen that each set of the countable intersection in the righthand

side of (4.7) belongs to A, which proves Ay € A. Also note that by Proposition 3.8,
P(Ap) = 1. Now, consider the set

(4.8) By ={weQ:B(z,r) Cp(w)}.
It is readily seen that
BO = ﬂ T (Ao)
i>0
whence
P(Bf) = P(JT7(45)) < Y B(T(45) = 0.
i>0 i>0
The rightmost equality holds because T is assumed to be null-preserving. Thus,

P(By) = 1 and one can find a P—null set Ny such that for all w € Q\ Ny the set
IIp(w) has a nonempty interior.
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Step 2. Consider x € E. The random variable defined by w — xr(,)(z) is nonneg-
ative, whence quasi-integrable with respect to any probability measure. Appealing
to hypotheses (a) and (b), it is possible to apply Theorem 2.1, which entails the
existence of a P and P*—null set IV, such that

n—-—+oo N 4

n—1
(49 xarm(@) =E*(xr()(z)) = lim - doxrrig (@)  weQ\N;.
1=0

Let N7 be the P—null set defined by

M= )N,
xzeD
Since the only possible values of the indicator functions are 0 and +oo, the following
equalities hold for all w € @\ Nj and = € D,

(4.10) Xy (@) = ) Xrrin (2) = SUD Xr(T%w) () = Xr1o () ()

i>0 =
Now, let us prove the inclusion IIp(w) C A*(T) for all w € Q\ (Ng U N7). Consider
r € DNIp(w). Since Xy, (z) = 0, Equation (4.10) entails z € A*(I'). We thus
have
(4.11) D NIly(w) € AX(T).
The left-hand side of (4.11) is nonempty, because IIy(w) has a nonempty interior by
Step 1. By Proposition 3.5 (a) we know that A*(T") is closed. Further, since ITy(w)
is a convex set with nonempty interior, taking the closure in both sides of (4.11)
yields

Ip(w) = cl(D N1p(w)) € A*(T).
Now, let us prove the converse inclusion, namely A*(I") C Ily(w). Defining the null
set No by

Ny=|J N,
xeD’

and using again (4.10), it is readily seen that for all z € D’ and w € Q\ N2 one has
x € Ip(w), which yields the inclusion

(4.12) D' C Ilp(w).

Taking the closure in both sides of (4.12) yields the desired inclusion. Thus, we
have shown that (4.3) holds for all w € Q\ (No U N1 U Ny).

Step 3. Now, let us prove that Equality (4.3) still holds when A(T") is no longer
assumed to have a nonempty interior. For each integer £ > 1 consider the random
set I'y, defined by

I'i(w)={z € E:d(z,T'(w)) < 1/k}.

For all w € 2, we have
(4.13) T'(w) =[] Te(w).
k>1

By condition (e), A(T") is nonempty. For any member zy € A(L'), the inclusion
B(zg,1/k) C T'y(w) holds for P—almost all w € Q and k > 1, which implies that the



10014 C. HESS, R. SERI, AND C. CHOIRAT

interior of A(I'y) is nonempty. By the result of Step 2, it is possible to construct a
P—null set N such that

(4.14) N (Tx) = () Te(T'w)

i>0
for allw € Q\ N and k > 1. In view of Remark 3.3 and Equation (4.13), taking the
intersection over k on both sides of (4.14) yields

AT = (YA TR = () Te(T'w) = [ [ Te(T'w) = (T (T'w),

k>1 k>11>0 1>20k>1 >0

which ends the proof. O

Remark 4.6. Another version of Theorem 4.1 was already stated in [10, Theorem
2.7] as a possible application of the main result of that paper.® However, the hy-
potheses were different from those of Theorem 4.1 and we have realized that we
were not able to prove this former version. Clearly the integrability hypothesis on
I" should be replaced with condition (e) of Theorem 4.1. Further, it seems difficult
to remove the convexity hypothesis on I' and the null-preserving hypothesis on T'.

5. ROBUST STOCHASTIC OPTIMIZATION

This section is devoted to robust stochastic optimization problems. First, we
discuss some formulations often encountered in the literature and give a significant
correction to one of them. Then, using the representation formula of Theorem 4.1,
we provide several approximation results for robust stochastic optimization problem.

5.1. Mathematical formulation. Consider a probability space ({2, A,P), a B(E)—
measurable function A : F — R and a random lIsc function, namely an A ®
B(E)—measurable function f : Q@ x E — R such that f(w,-) is Isc for P—almost
all w € Q. In the following we examine formulations of what is usually known in
the literature as a robust program (see, e.g., [6]). Consider the following stochastic
optimization program:

(O) Minimize h(x) subject to

flw,z) <0 P—a.s.
If we define the random set I' by
(5.1) Nw)={x € FE: f(w,x) <0} w €,

which is a special case of (3.8) (with § = 0), then the above program admits the
following equivalent formulation:
(O') Minimize h(z) subject to x € A(T), where A(T") was given by (3.9).

Example 5.1. Continuation of Example 3.1. Assume that Q@ = E = [0,1], and
consider the function f defined by f(w,z) = 0if w # z and f(w,z) = 1 if w = z.
The random set I' defined by (5.1) satifies I'(w) = E \ {w}, for all w € Q. This
is a special case of Example 3.1. We thus have I(I', N) = N for all N € Np and

3By the same authors as this one.
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A(T') = E, which shows that the constraints set given by I(I', N) may be much
smaller than that given by A(T).

Remark 5.2. Sometimes, Problem (O) or (O) is formulated in the literature as
follows:
(O”) Minimize h(z) subject to

flw,z) <0 Ywe Q.

It is worth observing that, in the above example, the set of constraints of Problem
(0"} is given by I(T",0) = (. Hence, the solution of (O”) is trivial and, of course, of
little interest. Consequently, in a probabilistic framework, the notion of essential in-
tersection appears to be quite useful for providing relevant and precise formulations
of robust optimization programs, as in (O').

5.2. Approximation results. The robust program given by (O) or (O') is often
difficult to solve in practice, because an infinite number of constraints is involved.
This is why it is customary to approximate it with a simplified version in which the
set, of constraints is replaced with a simpler one obtained through random sampling
or deterministic approximation. Let {wi}?:_ol be a finite sequence of points of 2
drawn according to the probability measure P. These points can be members of
either a random sample or a deterministic point-set. They can also be obtained
through the observation of real situations (e.g., in hydrology or climatology), so
that it is reasonable to suppose that each value exhibits some sort of dependence
upon the past. It is therefore relevant to consider the situation where the sequence
{wi}?gol is obtained through the iteration of a transformation 7' (i.e. w; = T'wy).
The resulting optimization problem is sometimes called a scenario program (see [8]),
since every sequence {wi}?:_ol corresponds to a particular scenario:
(Oy,) Minimize h (x) subject to

fwi,z) <0 1=0,...,n—1.

An alternative equivalent formulation is:
(O0’,,) Minimize h (x) subject to

n—1
T € ﬂ I (w;)
=0

where I' (w;) = {z € E: f (w;,z) < 0}.
As already seen, Theorem 4.1 implies that for P and P*—almost all wg € €2

AT) = () T (wi)
i>0
where w; = T'wy. The above formula suggests that the finite intersection
(5.2) Ty (wo) = () Tlws)
i<m
can give a consistent approximation of A*(I") provided m is large enough. Indeed,

this approximation holds in the sense of PK — convergence or even in that of Haus-
dorff distance when the constraints sets are compact (see Remark 4.2).
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Theorem 5.3 hereafter is the main result of this section. It shows a typical
situation where the solution of problem (O) or (O) (where PP is replaced with P*)
can be approximated by solutions of problems like (O,,) or (O’,). To make it more
precise, it is convenient to introduce the following optimization problems for all
w €  and all nonnegative integers m, namely

(Om(w)) : minimize h(z) under z € I, (w)
where IL,,,(w) is defined at (5.2).

Theorem 5.3. Let (Q,APT) be a dynamical system, E be a separable Banach
space, h: E — R and f : Qx E — R be extended-real-valued functions. Also assume
the following conditions:

(a) On (2, A), the probability P is ams with respect to T, with stationary mean
P‘k

(b) Z ={Q,0}, that is, T is ergodic,

(¢) T is null-preserving,

(d) f is A® B(E)—measurable and f(w,-) is Isc and convex for P—almost all
w € Q,

(e) the function © — g(x) = ess.supf(-,x) satisfies L(g,0) # 0 (see (2.3)),

(f) there exists Ay € A of positive measure such that f(w,-) is inf-compact for
P—almost all w € Ag,

(g) h is Isc,

(h) Problem (O") admits a unique solution T, namely

T € argminh subject to x € N*(T).

Under the above conditions, for P and P*—almost all w € Q and each sequence
(Trm)m>1 such that T, is a solution of (Om(w)) for each m, one has T,, — T and
h(Zpm) = h(T).

The following lemma, of a purely deterministic nature, serves for proving Theorem
5.3. It concerns the convergence of infima and minimizers of a given function A when
the minimization of h is carried out on a subset C),, where the sequence (Cy,),>0 is
non increasing.

Lemma 5.4. Let E be a metric space, h : E — R be a Isc extended-real-valued
function, (Cp)n>1 be a nonincreasing sequence of nonempty closed subsets of E and
let Cy denote

Cop = ﬂcn.

n>1

Consider the following optimization problems

(Oso) minimize h(x) subject to x € Cy
and for each n > 1

(On) minimize h(x) subject to x € Cy, .

Also consider a sequence (Tp)n>1 such that, for each n > 1, T, is a solution of
problem (Oy,), namely h(Z,) = infyec, h(z).
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(i) If T is a cluster point of (Tp)n>1, then Too is a solution of (Os) and
(5.3) MZTso) = lim h(z,).

n—-+o0o

(i1) In addition, if problem (O ) admits only one solution, then the whole sequence
(Ty) converges to Too.

Remark 5.5. There will exist a cluster point for the sequence (Z,) if at least one
of the sets C), is compact. Since the sequence is non increasing, this allows for a
finite number of C,’s to be non compact.

Proof of Theorem 5.3. Consider the random set I' defined by (5.1). Condition (d)
shows that the values of I' are closed and convex P—a.s. From (3.9) we know that

ANT) ={zx € E: g(x) <0}.

Condition (e) implies that A(I') is nonempty. Consequently, according to Theorem
4.1, it is possible to find a P and P*—null set N; such that the following equality
holds for all w € 2\ N
NI = [ T(T"w).
m>0
or equivalently
N(T) = {x € E:sup f(T"w,z) < O}.
m>0

Further, by Condition (f) there exists Ag € A of positive measure such that I'(w) is
compact for P—almost all w € Agy. This makes possible to apply Proposition 3.7 to T,
which shows that I'(T%w) is compact for infinitely many indices i > 0 and P—almost
all w € Q. Therefore, one can find a P—null set N2 with the following property: for
all w € Q\ N there exists an integer mg(w) such that II,,,(w) = <, [(T'w) is
compact for all m > mg(w) and for all w € Q\ Ny. Setting N = N; U Ny it only
remains to apply Lemma 5.4 (ii) and Remark 5.5 for each w € Q\ N to the sequence
(Cy) defined by C), =1I,,(w) (n > 1) and to Cs = A*(T). O

Proof of Lemma 5.4 One can find a subsequence (Zp, )r>1 of (Z,) such that
Too = limy_y400 Tp,. Observe that T, is a member of C,, because the limit of
a sequence is not changed by removing a finite number of terms and because the
sequence (C,) is nonincreasing. Consequently, one has

hMZToo) < liminf h(ZTp, ) = lim h(Z,) = lim inf h(x) < inf h(x) < h(ZTo).
k——+o0

n—-+0o n—+o00 z€Chp 2€Cso

The first inequality holds because h is Isc and the second one holds because the
sequence (h(Ty)) is nondecreasing. The above relationships imply that T, is a
solution of (O ) and

h(Too) = nEToo h(Zy)

which proves part (i). Part (ii) follows from a well-known result on compact metric
spaces. Il

Remark 5.6. (i) If Condition (f) of Theorem 5.3 is strengthened by assuming
that P(Ap) = 1, namely that f(w,-) is inf-compact for P—almost all w € €2, then,
f(T"w,-) enjoys the same property for all n > 0. It follows that the integer mgo(w)
appearing in the proof of Theorem 5.3 can be taken equal to 1 P—a.s.
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(ii) If A is inf-compact, then Condition (f) of Theorem 5.3 can be removed. The
constraint sets only need to be closed and convex.

(iii) If Problem (O’) is no longer assumed to have only one solution, but if the
sequence (T,) has a cluster point Z, then we can still assert that Z is a solution of

(O’) and that h (Z,,) — h (7).

The following corollary deals with the case of sequences of measurable selections
that are minimizers for P—almost all w € 2. Recall that the existence of such
measurable selections can be proved by standard arguments (see, e.g., [14] and the
references therein).

Corollary 5.7. Under the same hypotheses as in Theorem 5.3, for all sequences
In Q@ = E of measurable functions such that for P—almost all w € © and for all
n>1, f,(w) is a minimizer of h subject to

one has f,(w) = Z and h (f,(w)) = h(Z).
Proof. Appeal again to Lemma 5.4 (ii) and Remark 5.5. O

The next result shows that if the objective function h is assumed to be convex,
then it is possible to weaken the inf-compactness condition, which is only assumed
to hold in the weak topology of F.

Theorem 5.8. Let (2, A,P,T) be a dynamical system, E be a separable Banach
space, h: E =R and f : Qx E — R be extended-real-valued functions. Also assume
the same conditions (a) to (h) of Theorem 5.3 apart from Conditions (f) and (g)
that are replaced with:

(f*) there exists Ay € A of positive measure such that f(w,-) is weakly inf-compact
for P—almost all w € Ay,

(g’) h is Isc and convez.

Then, for P—almost all w € Q and for all sequences (T,,) such that

n—1
(5.4) Tp € argminh subject to x € ﬂ r (Tiw) .
i=0

one has T, — T in the weak topology and h (Z,) — h(T).

Proof. We only sketch the proof. It is based on a variant of Lemma 5.4 when
FE is a Banach space and h is assumed to be Isc and convex, whence Isc in the
weak topology. Further, using the weak compactness assumption of Condition (f)
and appealing to Eberlein’s Theorem, it is possible to extract a weakly converging
subsequence. The rest of the proof is like that of Theorem 5.3. O

A version of Corollary 5.7 for the weak topology could be also stated in the same
lines and is left to the reader.
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5.3. The case of i.i.d. sequences. Apart from the formulation we have used so
far, another one exists in Ergodic Theory: a sequence of random variables Xg, X1, ...
is said to be stationary if the random vectors (X, ..., X,,) and (X, ..., X,,+x) have
the same distribution for all integers n,k > 1. Those formulations are in some
sense equivalent. More precisely, given a probability space (£2,.4,P), a measure-
preserving transformation 7" and a random variable X, the sequence (X,)n>0 defined
by X, (w) = X(T"w) is stationary. Conversely, given a stationary sequence (X, )n>0
it is possible to construct another sequence (Xn)n207 another probability space
(', A’ P") and a measure preserving transformation 7" : Q' — Q' such that (X,,)
and (X,) have the same distribution (see, e.g., [7, Proposition 6.11]). Consequently,
Theorems 4.1 and 5.3 could be rewritten in the setting of stationary sequences. The
purpose of this subsection is to examine briefly the special case of i.i.d. sequences,
which is often encountered in applications. The extension to the case of pairwise
i.i.d. sequences is briefly addressed in Remark 5.13.

The distribution of a random set can be defined like that of any random variable.
If we regard a random set as a measurable map I' : Q — 2F it is necessary to intro-
duce a o—field on 2¥. A convenient and popular one is the so-called Effros—o— field
& (see, e.g., [3], [15] or [22]), which is generated by the following subsets of 2¥

FU={Fec2! . FnU#0}

where U ranges over the set U of all subsets of E. This corresponds to the definition
given in Section 2 (statement (b) of Proposition 2.3). Indeed, a random set I satisfies
I'~U=T"YFU) e Aforall UeU. The distribution of T is the probability Pr
defined on (2%, &) by

Pr(F U) =PI YFU)) =PI U)

forall U e U.

For a short introduction to the distribution of random sets and their indepen-
dence, we refer the reader to [15] or [22]. We only recall a useful criterion for random
closed sets.

Proposition 5.9. Let E be a Polish space. Given two random sets I'y and I'y with
closed values in E, the following three statements are equivalent:

(i) 'y and 'y have the same distribution.

(ii) For all open subsets U of E, P(I'TU) =P(I';U).

(iii) For any finite subset Y of E (or of some dense countable subset) the RF —valued
random vectors (d(y,T'1))yey and (d(y,I'2))ycy have the same distribution (where
the distance function was defined at (2.1)).

Similarly, two random sets I'y and I's are said to be independent if the equality
P(Fl,Fz) =Pr, ® Pr,

holds on the product measurable space (27 x 2F £ ® £), where (I'1,I'2) denotes the
map w — (['1(w), Fa(w)).

We present two results that are a transposition to the i.i.d. case of Theorems 4.1
and 5.3. The first one provides a version of the representation formula (4.3).
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Theorem 5.10. Let E be a separable Banach space and T : Q — 2F a random set
satisfying the following conditions.

(i) The values of T' are nonempty, closed and convet.

(ii) A(T") is nonempty.

Then, given an i.i.d. sequence (I'y)n>0 of random sets having the same distribu-
tion as ', the following equality holds for P—almost all w € €2

A(I) = Tp(w)
where Iy is the random set defined by Io(w) = (1,50 I'n(w).

Sketch of the Proof. 1t is enough to observe as above that an i.i.d. sequence is a
special case of a stationary sequence. [

Remark 5.11. It is interesting to mention that a direct proof of Theorem 5.10,
very similar to that of Theorem 4.1, can be given as well. Now, the analogue of
Equality (4.9) can be obtained by applying the strong law of large numbers to the
sequence of indicator functions xr,(x) (¢ > 0), where x € E is fixed. This gives

n

-1
(55 am@ =E(r()@) = lim 3 xne@)  weQ\N,
1=0

n—-+o0o N 4

where N, denotes a suitable P—null set (generally depending on x).

In order to state the i.i.d. version of Theorem 5.3 on the convergence of mini-
mizers, we consider once more a random convex Isc function f : Q x F :— R and
the random closed set I" defined by I'(w) = {x € E : f(w,z) < 0}. The distribution
of a random Isc function can be defined via the random set w +— epif(w,-) and
a criterion like Proposition 5.9 can be derived. Also consider an i.i.d. sequence
(fn)n>0 of random convex Isc functions having the same distribution as f and the
random closed sets I'), defined by

Ip(w) = L(fa(w,"),0) ={z € E: fo(w,z) <0}

As already seen, the following optimization problems (Om(w)) are defined for all
w € © and all nonnegative integers m > 0

(O (w)) : minimize h(z) under z € 1L, (w)
where 11, (w) is defined this time by II,,(w) =) Iy (w).

n<m-"n

Theorem 5.12. Let E be a separable Banach space, h: E — R and f : Qx E — R
be extended-real-valued functions. Also assume the following conditions:.

(i) f is A® B(E)—measurable and f(w,-) is Isc and convex for P—almost all
w € Q,
(ii) the function © — g(x) = ess.supf(-,x) satisfies L(g,0) # 0,
(iii) there exists Ay € A of positive measure such that f(w,-) is inf-compact for
P—almost all w € Ay,
(iv) h is lower semi-continuous,
(v) Problem (O') admits a unique solution T, namely

T € argminh subject to zen().
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Also consider an i.i.d. sequence (fn)n>0 of convex Isc functions having the same
distribution as f. Under the above conditions, for P—almost all w € Q and each
sequence (Tpm)m>1 such that Tp, is a solution of (Om(w)) for each m, one has
Ty — T and h (Ty,) — h(T).

Remark 5.13. Other versions of Theorems 5.10 and 5.12 can be proved using
the Etemadi strong law of large numbers for pairwise independent and identically
distributed random variables (see [11]). In this case, where mutual independence is
replaced with pairwise independence, it is no longer possible to appeal to Birkhoft’s
Ergodic Theorem. However, a direct proof can be given by mimicking that of
Theorem 4.1 and by observing that, by Theorem 1 of [11], Equality (5.5) also holds
for pairwise i.i.d. sequences of indicator functions.

Remark 5.14. Approximation results similar to those of this section are given
in [28] (Theorem 4.1 and Corollary 4.4). The formulation is different, but it can be
observed that the compactness assumptions are stronger than those of the present
paper. Further, in view of Remark 4.6 it seems that in Corollary 4.4 of [28] the
integrability condition (Hypothesis (iii)) is unnecessary.
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