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COMPARISON OF APPROXIMATIONS FOR COMPOUND
POISSON PROCESSES

BY

RAFFAELLO SERI AND CHRISTINE CHOIRAT

ABSTRACT

In this paper, we compare the error in several approximation methods for the
cumulative aggregate claim distribution customarily used in the collectivemodel
of insurance theory. In this model, it is usually supposed that a portfolio is at
risk for a time period of length t. The occurrences of the claims are governed by
a Poisson process of intensityμ so that the number of claims in [0, t] is a Poisson
random variable with parameter λ = μt. Each single claim is an independent
replication of the random variable X, representing the claim severity. The aggre-
gate claim or total claim amount process in [0, t] is represented by the random
sumof N independent replications of X, whose cumulative distribution function
(cdf) is the object of study. Due to its computational complexity, several approx-
imation methods for this cdf have been proposed. In this paper, we consider 15
approximations put forward in the literature that only use information on the
lower order moments of the involved distributions. For each approximation, we
consider the difference between the true distribution and the approximating one
and we propose to use expansions of this difference related to Edgeworth series
to measure their accuracy as λ = μt diverges to infinity. Using these expansions,
several statements concerning the quality of approximations for the distribution
of the aggregate claim process can find theoretical support. Other statements
can be disproved on the same grounds. Finally, we investigate numerically the
accuracy of the proposed formulas.

KEYWORDS

Collective risk theory, compound Poisson process, Edgeworth series.

1. INTRODUCTION

The aim of this paper is to provide a comparison of the error in several approx-
imation methods for the cumulative aggregate claim distribution customarily
used in the collective model of insurance theory. In this model, it is usually
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602 RAFFAELLO SERI AND CHRISTINE CHOIRAT

supposed that a portfolio is at risk for a time period of length t. The claims
take place according to a Poisson process of intensity μ so that the number of
claims in [0, t] is a Poisson random variable with parameter λ = μt. Each single
claim is a random variable Xi for i = 1, . . . , N with a common distribution. We
consider the random sum SN =∑N

i=1 Xi , i.e. a compound Poisson process rep-
resenting the aggregate claim or total claim amount process in [0, t]. The object
of study is therefore the cumulative distribution function (cdf) P {SN ≤ x} (see,
e.g., Philipson, 1968).

Since the computation of the function P {SN ≤ x} can be quite complex,
some approximations have been introduced. Several of these methods, such as
the normal, NP2, NP3, etc., originated from the central limit theorem (see be-
low) and have been introduced as approximations to the whole distribution
of the standardized random variable S�

N � SN−ESN√
V(SN)

. As these approximations
generated many discussions in the literature as to their relative merits, we will
consider the accuracy of all the methods with respect to the whole standard-
ized distribution F (x) � P{S�

N ≤ x}. However, as Brockett (1983) (see also,
e.g., Mikosch, 2006, Section 3.3.4 and Pesonen, 1969a, p. 28) correctly states,
what matters in some cases is the tail P {SN > x} for large x, i.e. a large de-
viation probability so that the application of a normal approximation based
on the central limit theorem may not yield an accurate result. However, as this
would take us too far, methods approximating only the right tail of the distri-
bution of SN (i.e. P {SN > x} for large x) are not considered here. Moreover,
in this paper, we only consider approximations that use information on the
lower order moments of the involved distributions. This requirement rules out
the Esscher series approximation, since it requires the knowledge (at least ap-
proximate) of the characteristic function of the random variable. It also rules
out methods of exact computation based on a preliminary discretization of the
claim distribution, such as Panjer recursion and the FFT, since they do not only
use information on lower order moments. These methods will be analyzed in
companion papers. As often happens in the literature, we do not consider here
the problems introduced by the computation of the parameters from a set of
data.

In this paper, we consider the normal, Edgeworth, NP2, NP2a, Adjusted
NP2, NP3, Wilson–Hilferty, Haldane A and B, lognormal, Gamma, translated
Gamma, Bowers Gamma, inverse Gaussian and Gamma–IG approximations.
For these 15 approximations put forward in the literature, we consider the differ-
ence between the true distribution and the approximating one andwe propose to
use expansions of this difference related to the Edgeworth series tomeasure their
accuracy as λ → ∞. Using these expansions, several statements concerning the
quality of approximations for the distribution of the aggregate claim process
can find theoretical support. Other statements can be disproved on the same
grounds. With respect to related uniform bounds similar to the famous Berry–
Esséen one, the present approach has three definite advantages. First, it holds
also when the accuracy of themethod is not uniform throughout the support (as
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happens, e.g., for what we call, following Pentikäinen, 1977, the NP2a approx-
imation). Second, it provides a different measure of the quality of the approx-
imation in different points of the real line. Third, the expansions are additive,
in the sense that the expansion for F1 (x) − F2 (x) can be obtained summing
up the expansions for F1 (x) − F3 (x) and F3 (x) − F2 (x) (this property will be
occasionally used in the proofs).

Our approach passes through a reappraisal of the Edgeworth expansion.
Indeed, the literature on the approximation of the distribution of compound
Poisson processes has often dismissed without appeal the Edgeworth expansion
both as an approximation method and as a check of adequacy. The first dis-
missal is quite justified since, as the literature has widely documented and as
we will show below, far better approximations exist that are not characterized
by an increased computational complexity. The second dismissal is, up to our
comprehension of the matter, difficult to justify and peculiar to insurance the-
ory. Indeed, it has often been stressed (see, e.g., Kauppi and Ojantakanen, 1969,
p. 222, Beard et al., 1990, p. 108) that the Edgeworth expansion as an infinite se-
ries is divergent when the number of terms in the expansion is increased without
limit.1 Nevertheless, the approximation error of the truncated Edgeworth series
is uniform throughout the domain of the function and is of an higher order
than the last included term. Therefore, we will avoid the problems due to the
divergence of the Edgeworth expansion stopping our series at the term of order
λ−3/2. From this point of view, our approach is similar to the one described in
Cramér (1946, p. 229) and used in Hall (1983). Summing up, we make ours the
following affirmation by DasGupta:

It is potentially risky to use the Edgeworth expansion to approximate
very small tail probabilities. However, it [the Edgeworth expansion] has
succeeded in predicting with astounding accuracy the performance of
various types of procedures. Instances of these success stories can be
seen in the bootstrap literature . . . (DasGupta, 2008, p. 218)

The results of this paper concern approximation methods that have been
mainly introduced before the development of personal computers. Nevertheless,
even if these methods are sometimes quite out-dated and are not always very re-
liable,2 we believe that it is important to tell a definitive word concerning their
relative performances, especially when the topic has spawned a lot of discussion,
such as in the case of the relative merits of NP2 and Gamma approximations
or of the supposed independence of the Gamma approximation on the skew-
ness parameter. There is another sense in which our analysis may be of interest
to the readers. Some of these methods were introduced as truncations of po-
tentially exact series methods for the computation of the cumulative aggregate
claim distribution. The first and simplest case is the whole range of Edgeworth
expansions, starting from the normal approximation of Section 3 (with error
O(λ−1/2)), the Edgeworth expansion of Section 4 (with error O(λ−1)), and the
one that Cramér (1955) called Normal II approximation (with error O(λ−3/2)).
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A second example is constituted by the NP2 and NP3 approximations (see re-
spectively Sections 5 and 8) and by theNP4 approximation considered inBowers
(1967) that are given by the inversion of inverse Cornish–Fisher expansions of
varying degrees. Finally, the foremost example from this point of view is consti-
tuted by the Bowers Gamma approximations that can be seen as truncations of
the numerical inversion of Laplace transforms in terms of Laguerre polynomi-
als: the starting point is the Gamma approximation of Section 13, the addition
of one term yields the approximation in Heilmann (1988, p. 129) (that we do not
consider explicitly here), while the one in Section 15 derives from the addition
of two further terms. The transformation of this approximation into an exact
method was proposed and dismissed in the actuarial literature (see the discus-
sion in Pfenninger, 1974; Seal, 1975/76; Taylor, 1977). These examples show that
several results contained in the present paper can be seen as critiques of trun-
cated series methods (see Heilmann, 1988, Section 3.3) for low orders of the
truncation parameter. As an example, our analysis of the Gamma and Bowers
Gamma approximations shows that little can be expected from the correspond-
ing exact method as concerns the rate of convergence.

The organization of the paper is as follows. In Section 2, we first provide
our main tool, i.e. an Edgeworth expansion for the distribution of compound
Poisson processes whose rigorous proof appears to be new. Using this tool, we
analyze 15 approximations characterized by the fact that they only use infor-
mation on the lower order moments of the involved distributions. We therefore
consider the normal (Section 3), Edgeworth (Section 4), NP2 (Section 5), NP2a
(Section 6), Adjusted NP2 (Section 7), NP3 (Section 8), Wilson–Hilferty (Sec-
tion 9), Haldane A (Section 10) and B (Section 11), lognormal (Section 12),
Gamma (Section 13), translated Gamma (Section 14), Bowers Gamma (Sec-
tion 15), inverse Gaussian (Section 16) and Gamma–IG (Section 17) approxi-
mations. For each approximation, we provide expansions of the error in pow-
ers of λ. The methods employed are as disparate as Edgeworth series for com-
pound Poisson processes and for sums of iid random variables, Taylor expan-
sions, and Lagrange’s inversion formula. In Section 18, we investigate numer-
ically the accuracy of the proposed formulas. Proofs are gathered together in
Appendix A.

2. MATHEMATICAL PRELIMINARIES

We briefly recall the framework where the claims take place according to a Pois-
son process of intensityμ and the number of claims in [0, t] is a Poisson random
variable with parameter λ = μt. Each single claim is a random variable Xi for
i = 1, . . . , N that is an independent copy of a random variable X. We consider
the random sum SN = ∑N

i=1 Xi and the normalized sum S�
N � SN−ESN√

V(SN)
. The

approximation of F (x) = P
{
S�
N ≤ x

}
is the object of the paper.
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We denote asμi the i−th noncentral moment of X. Then the aggregate claim
process has moments:

ESN = μ1 · λ

V (SN) = μ2 · λ

ES2N = (μ2 + μ2
1λ
) · λ

ES3N = {μ3 + 3μ2μ1λ + μ3
1λ

2} · λ

κ3 (SN) = μ3 · λ

κ4 (SN) = μ4 · λ

κ5 (SN) = μ5 · λ.

Moreover, we will write γ1 � μ3

μ
3/2
2 λ1/2

(skewness index), γ2 � μ4

μ2
2λ

(kurtosis index)

and γ3 � μ5

μ
5/2
2 λ3/2

.

We start our investigation with an Edgeworth expansion of the distribution
F (x) for large values of the Poisson parameter λ. Unfortunately, not many re-
sults are available in the literature in this direction. Cramér (1955, p. 32) provides
a formal Edgeworth expansion up to terms of order λ−1; the result is essentially
the same reported in Beard et al. (1990, Appendix B). Marsh (1973) considers
rigorous Edgeworth expansions of arbitrary order for a class of random sums
slightly more general than compound Poisson processes. However, his centering
is different from ours, since he (at least implicitly) uses SN−Nμ1√

λ
. von Chossy and

Rappl (1983) consider expansions of arbitrary order under an additional (re-
strictive) condition on X. Hipp (1985) considers compound Poisson processes
in which the random variable X is replaced by a random vector; moreover he al-
lows for dependence between the waiting times and the vector so that his results
are extremely general but quite difficult to use. If a dependence between inter-
claim times and claim intensity were to be supposed, his results would be the
ideal starting point. Having in mind applications to the bootstrap, Babu et al.
(2003) consider one-term asymptotic expansions for the more difficult case of
studentized means, i.e. SN−λμ1√∑N

i=1 X
2
i

.

The next theorem shows that the formal Edgeworth expansion found in the
literature can be made rigorous following the lines of Marsh (1973). A more
general version of the same theorem is contained in Appendix A.

Theorem 1. Consider a compound Poisson process with intensity μ observed over
[0, t], and let λ = μt. Let � be the cumulative distribution function and φ the
probability density function of a standard normal random variable. Let μ j be
the j -th noncentral moment of the random variable X, and ϕ (s) its character-
istic function. Suppose that μ5 < +∞ and lim sup|s|→∞ |ϕ (s)| < 1. Then, if



606 RAFFAELLO SERI AND CHRISTINE CHOIRAT

F (x) = P{ SN−ESN√
V(SN)

≤ x}:

F (x) = � (x) + φ (x) · (1 − x2
) · γ1

6
+ φ (x) · x ·

×
{(

3 − x2
) · γ2

24
+ (10x2 − x4 − 15

) · γ 2
1

72

}

+φ (x) ·
{(−x4 + 6x2 − 3

) · γ3

120
+ (−x6 + 15x4 − 45x2 + 15

) · γ1γ2

144

+ (−x8 + 28x6 − 210x4 + 420x2 − 105
) · γ 3

1

1296

}
+ o

(
λ−3/2)

where the remainder term is uniform.

Remark 2. (i) The result in Marsh (1973) for the compound Poisson process
can be recovered replacing, in Theorem 1, Xi with Xi − EXi , so that SN =∑N

i=1 Xi − N · EXi and ESN = 0. In that case, μ j has to be replaced in the
statement by the corresponding central moment μ′

j for j = 2, 3, 4.
(i i) The difference with respect to the classical Edgeworth expansion is that in

that case μ j is replaced by μ′
j for j = 2, 3 and μ4 is replaced by μ′

4 − 3
(
μ′
2

)2
.

Additional terms can be obtained from the classical Edgeworth expansion re-
placing the cumulants appearing in that case with the noncentral moments.

Table 1 provides a summary of the results for the 15 approximation meth-
ods considered below. The column “Moment” contains the number of moments
whose knowledge is required for the computation of the approximation. The
column “Order” displays the order of the polynomial representing the approxi-
mation error in terms of powers of λ. It is an indicator of the lowest order termof
the Edgeworth expansion of F (x) that is not annihilated by the approximation;
as an example, the fact that the NP2 approximation has λ−1 implies that the
term of order λ−1/2 in F (x) is annihilated by the approximation while the term
of order λ−1 is not. The column “Leading term” reproduces, for the leading
term of the approximation error, the term associated with the highest powers
of x (note that, in order to save space, we do not display the normal density
φ (x) multiplying each term). The choice of this measure has a double purpose.
First of all, it shows in a compact way which moments of the distribution enter
the formula. As an example, the term of order x3λ−1 of the NP2 approximation
annihilates when 3γ2 = 4γ 2

1 . Second, it provides, through the power of x, an
indicator of the instability of the tail. The latter point deserves a more thorough
explanation. Despite the fact that the Edgeworth series fail to converge or to
adequately describe the probability tail for values of x of size λ1/6 or smaller
(see Hall, 1992, p. 325), the presence in the expansion of a higher order poly-
nomial seems to be associated with higher volatility in the tails (see below for
several references illustrating this fact). Therefore, provided x is considered as
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TABLE 1

SUMMARY OF THE DIFFERENT APPROXIMATIONS.

Method Moment Order Leading term Domain LE value

Normal 2 λ−1/2 −x2 γ1
6 R −∞

Edgeworth 3 λ−1 −x3 γ2
24 R −∞

NP2 3 λ−1 − x3

6

(
γ2
4 − γ 2

1
3

) [
λ
(
μ1 − 3μ2

2
2μ3

)
− μ3

6μ2
,+∞

)
�
(
− 3

γ1

)
NP2a 3 λ−1 − x3

3

(
γ2
8 − γ 2

1
3

)
R −∞

Adjusted NP2 3 λ−1 − x3

6

(
γ2
4 − γ 2

1
3

)
comp. comp.

NP3 4 λ−3/2 − x4

3

(
γ3
40 − γ1γ2

8 + γ 3
1
9

)
comp. comp.

Wilson-Hilferty 3 λ−1 − x3

12

(
γ2
2 − 7γ 2

1
9

) [
λμ1 − λ

2μ2
2

μ3
,+∞

)
�
(

γ1
6 − 6

γ1

)
Haldane A 3 λ−1 − x3

6

(
γ2
4 + μ3

3λμ1μ2
− 5γ 2

1
9

)
[0,+∞) comp.

Haldane B 4 λ−3/2 − x4

8

(
γ3
15 + γ1γ2

36 + γ 3
1
27 − γ 2

2
8γ1

) [
λ
20μ1μ

2
3−9μ1μ2μ4−12μ2

2μ3

20μ2
3−9μ2μ4

,+∞
)

comp.

Lognormal 2 λ−1/2 − x2

2

(
γ1
3 − μ

1/2
2

λ1/2μ1

)
[0,+∞) 0

Gamma 2 λ−1/2 − x2

3

(
γ1
2 − μ

1/2
2

λ1/2μ1

)
[0,+∞) 0

Tr. Gamma 3 λ−1 − x3

8

(
γ2
3 − γ 2

1
2

) [
λ
(
μ1 − 2μ2

2
μ3

)
,+∞

)
0

Bowers Gamma 5 λ−1 − x5

18

(
μ2

μ2
1λ

+ γ 2
1
4 − μ3

μ1μ2λ

)
[0,+∞) 0

Inv. Gaussian 3 λ−1 − x3

72

(
3γ2 − 5γ 2

1

)
[λ (μ1 − 3μ2) ,+∞) 0

Gamma–IG 4 λ−3/2 − x4

3

(
γ3
40 − 2γ2γ1

15 + γ 3
1
8

) [
λ
(
μ1 − μ2 max

{
2μ2
μ3

, 3
})

,+∞
)

0
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fixed (or slowly increasing), this is a useful indicator of the reliability of the ap-
proximation in the tails. Supposing that the domain of the random variable X is
[0, +∞), the column “Domain” indicates the domain on which the approxima-
tion to the distribution of SN (and not of S�

N) is defined, while the column “LE
value” provides the value assumed by the approximation at the left endpoint,
i.e. LE (provided this is finite). The word “comp.”, standing for “complicated”,
labels those cases in which the left endpoint and/or the value assumed by the
function at this point are difficult to manage and uninformative.

3. NORMAL APPROXIMATION

The normal approximation is based on an application of Rényi’s version of
Anscombe central limit theorem (see Gut, 2005, Theorem 3.2). Cramér (1955,
p. 30) calls it “Normal I” approximation and credits F. Lundberg with the in-
troduction of this approximation in the first years of the 20th century, as well as
with the first criticisms concerning its inadequacy, especially in the tails. In this
case, the error is trivially:

F (x) − � (x) = −φ (x) · (x2 − 1
) · γ1

6
− φ (x) · x ·

×
{(
x2 − 3

) · γ2

24
+ (x4 − 10x2 + 15

) · γ 2
1

72

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (x8 − 28x6 + 210x4 − 420x2 + 105
) · γ 3

1

1296

}
+ o

(
λ−3/2) .

This error holds uniformly for all x.
Several criticisms have been raised concerning this approximation (see,

among others, Cramér, 1955, p. 30, Kauppi and Ojantakanen, 1969, p. 214,
Papush et al., 2001, p. 181, Beard et al., 1990, p. 105). The above expansion
confirms that, for large γ1, the distribution is particularly badly approximated.
As concerns the approximation accuracy of the tail, especially in relative terms,
see Section 4.

4. EDGEWORTH APPROXIMATION

Up to the authors’ knowledge, this approximation first appears in Cramér
(1955) where the version including terms up to order λ−1 is called “Normal II”
approximation. It is considered, among others, in Bohman and Esscher (1963a)
where it is correctly attributed to Cramér (1955) and is called “N-method”. In
the literature, also the Gram-Charlier A expansion has been discussed (see, e.g.,
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Heilmann, 1988, Section 3.3.2): this is simply the Edgeworth series arranged in
a different way (according to the order of the derivatives of � and not of the
powers of λ−1/2). However, it is well-known that its approximation properties
are inferior to the Edgeworth series and it is usually used only for introductory
purposes. Therefore, we do not consider it here. In the case of the Edgeworth
approximation, the error is:

F (x) − � (x) + φ (x) · (x2 − 1
) · γ1

6

= −φ (x) · x ·
{(
x2 − 3

) · γ2

24
− (x4 − 10x2 + 15

) · γ 2
1

72

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (x8 − 28x6 + 210x4 − 420x2 + 105
) · γ 3

1

1296

}
+ o

(
λ−3/2) .

The same remarks concerning the normal approximation are also applicable,
to a lesser extent, to this approximation (see, e.g., Bohman and Esscher, 1963a,
pp. 205–206, Kauppi and Ojantakanen, 1969, p. 221, Pesonen, 1969a, p. 32,
Beard et al., 1990, p. 108). Most of these criticisms concern the fact that this
approximation only describes accurately a neighborhood of the mean of the
distribution. However, the absolute error term in a truncated Edgeworth series
(i.e. obtained stopping the sum after a finite number of terms) is uniform so that
the error in the approximation of the tail is not expected to be larger than the
error in the center of the distribution. Even more can be said: for the classical
Edgeworth expansion, the bound is uniformly decreasing in x so that o

(
λ−1
)

can be replaced by o[λ−1 · (1 + |x|)4]. Therefore, the error in the tail is in general
smaller than in the center of the distribution. What is true, on the other hand,
is that the decrease in the absolute error for large |x| is not sufficient to make
the relative error small (see, e.g., Kolassa, 2006, Section 3.6) so that far from
the center of the distribution the error can even be larger than 100% of the true
value (for a heuristic reasoning, see Pesonen, 1969a, p. 28). By the way, the same
thing can be said of the following methods, as no result on relative approxima-
tion is known to the authors. However, due to the absence of the term in the
fourth power of x in (some of) the following methods, the approximation will
be generally better in absolute (and relative) terms.

5. NP2 APPROXIMATION

The NP2 approximation is usually credited to Kauppi and Ojantakanen. In-
deed, it was first found by Loimaranta (see Kauppi and Ojantakanen, 1969, p.
219) and described in Kauppi and Ojantakanen (1969). The first uses of the
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formula seem to be due to Bowers (1967) (who therefore predated Kauppi and
Ojantakanen, 1969), Hovinen (1969, pp. 229–230), Pesonen (1969a, p. 31) and
Pesonen (1969b), all acknowledging priority to a communication ofKauppi and
Ojantakanen at the ASTIN Colloquium in Arnhem in 1966. In this case, we
have:

F (x) − �

⎛
⎝ 3

γ1

⎡
⎣
√
1 + γ 2

1

9
+ 2γ1

3
· x− 1

⎤
⎦
⎞
⎠

= −φ (x) · x ·
{(
x2 − 3

) · γ2

24
+ (−2x2 + 5

) · γ 2
1

36

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (−6x6 + 75x4 − 184x2 + 49
) · γ 3

1

648

}
+ o

(
λ−3/2) .

This shows that the formula provides a better approximation for the tail when

both γ1 and γ2 are small, or more generally when γ 2
1
3 − γ2

4 is near to zero (see
Kauppi and Ojantakanen, 1969, p. 226, Pesonen, 1969a, p. 32, Berger, 1972, p.
92, Bühlmann, 1974, p. 131, Pentikäinen, 1977, p. 285, Chaubey et al., 1998, p.
230).

Already in Kauppi and Ojantakanen (1969, p. 221 and pp. 224–226) (see
also Beard et al., 1990, p. 112), it was realized that the NP2 approximation is
far better than the Edgeworth one. This is due to the fact that the polynomial
associated with γ 2

1 is 2x2−5
36 for the NP approximation and −x4+10x2−15

72 for the
Edgeworth one. Clearly the second one gives amuch larger error when x is large.

Our results also allow one to prove the statement of Gendron and Crepeau
(1989, p. 257) according to which this approximation usually underestimates the
exact value of F (x, t). Indeed, the authors consider mainly tail approximations
(the graphs represent probabilities larger than 0.5). In this situation, theNP2 ap-
proximation underestimates F (x, t), while the contrary is true for small values
of x.

However, the main drawback of the NP2 approximation (and also of the
adjusted NP2 and of the NP3) concerns the fact that it is defined only where the
square root term is positive (see Hardy, 2004 for a statement, and Beard et al.,
1990, pp. 116–117 for corrections to this fact).

6. NP2A APPROXIMATION

This approximation uses �(x − λ−1/2μ3

6μ3/2
2

· (x2 − 1)). This is known in Statistics

as the first-order “normalizing” Cornish–Fisher expansion (see, e.g., Hill and
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Davis, 1968). It seems to us that the first appearance in actuarial sciences is due
to Pentikäinen (1977), as a simpler version of the NP2 approximation. We get:

F (x) − �
(
x− γ1

6
· (x2 − 1

))

= −φ (x) · x ·
{(
x2 − 3

) · γ2

24
+ (−4x2 + 7

) · γ 2
1

36

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (−6x6 + 51x4 − 104x2 + 26
) · γ 3

1

324

}
+ o

(
λ−3/2) .

The only difference with respect to the NP2 approximation is that the term
−2x2 +5 is here replaced by −4x2 +7. This means that the NP2 approximation
is slightly better than the NP2a approximation in the tail, but this difference
is smaller when γ 2

1 is small (see Pentikäinen, 1977, p. 281). However, this ap-
proximation is much worse than the previous one for large x: when γ1 > 0 and
x → ∞, F (x) converges to 1 while�

(
x− γ1

6 · (x2 − 1
))

converges to 0. Indeed,
a well-known fact in Statistics is that inverse Cornish–Fisher expansions are “far
more accurate” than normalizing Cornish–Fisher expansions and give “very
good approximation at the right tail” (see Lee and Lee, 1992, pp. 448–449).
Since the NP2 approximation is obtained through the inversion of an inverse
Cornish-Fisher expansion (the procedure is described in Lee and Lee, 1992, p.
449, quoting the 1984 edition of Beard et al., 1990 as a reference) and the NP2a
is a normalizing expansion, the different behavior in the extreme tail comes as
no surprise.

7. ADJUSTED NP2 APPROXIMATION

The adjusted NP2 approximation was introduced by Ramsay (1991). It is based
on the computation of b0 that is the unique root of equation γ1 = 6b−4b3 lying
in the interval [0, 1/

√
2], and a0 =√

1−2b20. Then, the approximation is�
(− a0

2b0
+√

1+ 1
b0

·x+ a20
4b20

)
and the approximation error turns out to be:

F (x) − �

(
− a0
2b0

+
√
1 + 1

b0
· x+ a20

4b20

)
= −φ (x) · x (x2 − 3

) ·
{

γ2

24
− γ 2

1

18

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (−x6 + 13x4 − 33x2 + 9
) · γ 3

1

108

}
+ o

(
λ−3/2) .
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Note that even if the NP2 and adjusted NP2 methods yield similar approxima-
tion errors (see Ramsay, 1991, p. 150), the graphs in Section 18 show that the
two errors can have quite different behaviors in practice.

8. NP3 APPROXIMATION

This approximation was proposed in Kauppi and Ojantakanen (1969), but note
that already Bowers (1967) used an NP4 approximation (crediting Kauppi and
Ojantakanen with it). The approximation is also used in Pesonen (1969b) and

Pentikäinen (1977). Consider the cubic (in y) equation (
γ2
24− γ 2

1
18 )·y3+ γ1

6 ·y2+(1−
γ2
8 + 5γ 2

1
36 ) · y− (x+ γ1

6

) = 0. Let y (x) be the value, function of x, solving it. As
this equation has in general 3 solutions, it is necessary to select the appropriate
root. Following the same method of proof outlined in Appendix A, a rule of
thumb is to choose y as the root that is nearest to the development y = x− γ1

6 ·
(x2 − 1) − γ2

24 · (x3 − 3x) + γ 2
1
36 · (4x3 − 7x) + O(γ 3

1 ). Then:

F (x) − � (y (x)) = −φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (−x4 + 5x2 − 2

) · γ1γ2

24

+ (12x4 − 53x2 + 17
) · γ 3

1

324

}
+ o

(
λ−3/2) .

The complexity of the procedure has induced someone to remove this approxi-
mation from the list of simple procedures (Seal, 1977, p. 214).

The increase in precision due to the NP3 approximation has been subject
to doubt: some authors have suggested that the NP2 and NP3 approximations
are so similar that the latter does not deserve particular consideration (see, e.g.,
Berger, 1972, p. 92), while others have found that the NP3 formula improves
over the NP2 one but can, nevertheless, worsen in an irregular way especially in
the tails (see, e.g., Beard et al., 1990, p. 116). Our expansion shows that the NP2
and NP3 approximations annihilate respectively terms up to order λ−1/2 and
λ−1 so that the latter really improves upon the former. The reason for which the
behavior of the NP3 approximation can worsen in the tails is to be found in the
fact that the first-order approximation of the error F (x) − � (y (x)) behaves as

φ (x) x4 · (− γ3
120 + γ1γ2

24 − γ 3
1
27 ) (for x = o(λ

1
6 )) and this can be quite large: even

if φ (x) decreases exponentially fast while x4 increases only polynomially, the
resulting approximation can be inaccurate for extreme probabilities.

9. WILSON–HILFERTY APPROXIMATION

TheWilson–Hilferty approximationwas proposed in 1931 (Wilson andHilferty,
1931) as an improvement over Fisher’s approximation (Fisher, 1928, pp. 96–97)
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of the χ2 distribution. Both transformations were originally limited to the χ2

case. It was Pentikäinen (1987, p. 22), in his study of the Haldane approxima-
tions (see below), who extended it to the approximation of the aggregate claim
distribution. It can be seen as a version of Haldane A method in which h = 1

3 ,
namely the value taken by 1− μ1μ3

3μ2
2
for a χ2. As theHaldanemethods (see below),

it is better seen as a transformation of SN yielding an approximately normal
distribution. The distance between the two distributions can be analyzed apply-
ing the delta method for the Edgeworth expansion (see Skovgaard, 1981) and
provides a uniform expansion. However, this would lead to a formula that is
not comparable with the other formulas of the paper. Therefore, following Pen-
tikäinen (1987), we invert the transformation in order to provide a modification
of the normal quantile with improved properties.

The method approximates F (x) through �([(1 + xγ1
2 )1/3 − (1 − γ 2

1
36 )] · 6

γ1
):

F (x) − �

([(
1 + xγ1

2

)1/3
−
(
1 − γ 2

1

36

)]
· 6
γ1

)

= −φ (x) · x (x2 − 3
) ·
{

γ2

24
− 7γ 2

1

108

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (−7x6 + 87x4 − 208x2 + 52
) · γ 3

1

648

}
+ o

(
λ−3/2)

The limits and the advantages of the formula have correctly been identified in
the literature, where it is often unfavorably compared to the Haldane method
presented below (see Pentikäinen, 1987, p. 30, Hardy, 2004).

10. HALDANE A APPROXIMATION

The Haldane A approximation was proposed in Haldane (1938) as a general-
ization of the Wilson–Hilferty transformation. Pentikäinen (1987) provided an
adaptation to the computation of the aggregate claim distribution. It is based
on the transformation ( SN

ESN
)h where h is chosen in such a way as to annihilate the

leading term in the skewness index of ( SN
ESN

)h . In practice, we are led to consider:

S′
N =

(
SN
μ1λ

)h
− 1 + h(h−1)

2

[
1 − (2−h)(1−3h)

4
μ2

μ2
1
λ−1
]

μ2

μ2
1
λ−1

h
√

μ2

μ1
λ−1/2

√
1 − (1−h)(1−3h)

2
μ2

μ2
1
λ−1
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where h � 1 − γ1μ1λ
1/2

3
√

μ2
= 1 − μ1μ3

3μ2
2
(the case h = 0 has to be covered separately,

see Pentikäinen, 1987, p. 21, Hardy, 2004). S′
N has a distribution that can be

approximated by a normal one.We stick to the formulation used by Pentikäinen
(1987, pp. 22–23) for Haldane B approximation. Haldane A approximation uses

�(
(1+bx)h−my

σy
) where

my = 1 − 1
2
c (b − c)

[
1 + 1

4
(2b − c) (3c − b)

]

σy = |c|
√
1 + 1

2
(b − c) (3c − b).

For Haldane A method b = μ
1/2
2

μ1
λ−1/2, c = μ

1/2
2

μ1
λ−1/2 − γ1

3 and h = c
b = 1− μ1μ3

3μ2
2
.

We have:

F (x) − �

(
(1 + bx)h −my

σy

)

= −φ (x) · x · (x2 − 3
) ·
(

γ2

24
+ μ3

18μ1μ2λ
− 5γ 2

1

54

)

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144

+ (−5x6 + 54x4 − 113x2 + 26
) · γ 3

1

324

+ (2x6 − 11x4 + 12x2 − 9
) · μ2

3

216μ1μ
5/2
2 λ3/2

+ (−x4 + 3
) · μ3

36μ2
1μ

1/2
2 λ3/2

}
+ o

(
λ−3/2) .

The performance of the method is quite good, especially in the right tail (see,
e.g., Hardy, 2004).

11. HALDANE B APPROXIMATION

The method was introduced by Haldane (1938) and is based on the transforma-
tion (

SN+g−ESN
g )h where h and g are chosen in such away to annihilate the leading

terms in the skewness and in the kurtosis indices. It was adapted to the present
case by Pentikäinen (1987). For the Haldane B method, taking b = 5

3γ1 − 3γ2
4γ1

,
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c = 4
3γ1 − 3γ2

4γ1
and h = c

b = 16γ 2
1 −9γ2

20γ 2
1 −9γ2

, we get:

F (x) − �

(
(1 + bx)h −my

σy

)

= −φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x4 + 78x2 − 81

) · γ1γ2

288

+ (6x4 − 332x2 + 314
) · γ 3

1

1296
+ (−x4 + 3

) · γ 2
2

64γ1

}
+ o

(
λ−3/2) .

Already Haldane remarked that in some cases this approximation is not better
than the previous Haldane A approximation. In Pentikäinen (1987, p. 29), it is
remarked that the Haldane B approximation gives remarkably precise results
when the skewness γ1 is small, but deteriorates rapidly as γ1 increases.

12. LOGNORMAL APPROXIMATION

The lognormal distribution has a long history as a claim distribution (see, e.g.,
Papush et al., 2001 for references), but it is quite difficult to reconstruct its
history as a distribution for the aggregate claim amount. A reference is Heil-

mann (1988, p. 124). It approximates SN−ESN√
V(SN)

through LN (m,s2)−em+ s2
2√

e2m+s2 (es
2−1)

with m =
ln(μ2

1λ
2) − 1

2 ln
(
μ2
1λ

2 + μ2λ
)
and s2 = ln(1 + μ2

μ2
1λ

), yielding:

F (x) − �

⎧⎨
⎩
ln

1
2

(
1 + μ2

μ2
1
λ−1
)

2
+

ln
(
1 + x ·

√
μ2

μ1
λ− 1

2

)
ln

1
2

(
1 + μ2

μ2
1
λ−1
)
⎫⎬
⎭

= −φ (x) · (x2 − 1
) ·
{

γ1

6
− μ

1/2
2

2μ1λ1/2

}

−φ (x) ·
{(
x3 − 3x

) · γ2

24
+ (x5 − 10x3 + 15x

) · γ 2
1

72

+ (−3x5 + 14x3 + 3x
) · μ2

24μ2
1λ

}

−φ (x) ·
{(
x4 − 6x2 + 3

) · γ3

120
+ (x6 − 15x4 + 45x2 − 15

) · γ1γ2

144
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+ (x8 − 28x6 + 210x4 − 420x2 + 105
) · γ 3

1

1296

+ (−x8 + 12x6 − 20x4 − 8x2 − 7
) · μ

3/2
2

48μ3
1λ

3/2

}
+ o

(
λ−3/2) .

This approximation does not even annihilate the λ−1/2 term.

13. GAMMA APPROXIMATION

This approximation was introduced in Bartlett (1965), where the author pro-
posed to use a (non-translated) Gamma random variable whose first two mo-
ments agreed with the compound Poisson process. Bartlett’s paper had a certain
impact since also Bowers (1966), Thompson (1969) andBeekman (1969) consid-
ered related problems in the light of Bartlett approximation, but its use declined
after the revival of the translated Gamma distribution (see below). Despite the
improvement generally constituted by the latter, the non-translated two parame-
ter Gamma is sometimes still used (see, e.g., Papush et al., 2001), mainly because
it has the same domain as the approximated random variable.

The idea is to approximate the centered and normalized sum using the ran-

dom variable μ
1/2
2

2μ1λ1/2 (χ
2
2λμ21
μ2

− 2λμ2
1

μ2
), where χ2

n is a shortcut for χ2
n ∼ �( n2 ,

1
2 ) with

positive real n:

F (x) − P

{
μ
1/2
2

2μ1λ1/2

(
χ2

2λμ21
μ2

− 2λμ2
1

μ2

)
≤ x

}

= −φ (x) · (x2 − 1
) ·
{

γ1

6
− μ

1/2
2

3μ1λ1/2

}
− φ (x) ·

{(
x3 − 3x

) ·
(

γ2

24
− μ2

4μ2
1λ

)

+ (x5 − 10x3 + 15x
) ·
(

γ 2
1

72
− μ2

18μ2
1λ

)}

−φ (x) ·
{(
x4 − 6x2 + 3

) ·
(

γ3

120
− μ

3/2
2

5μ3
1λ

3/2

)

+ (x6 − 15x4 + 45x2 − 15
) ·
(

γ1γ2

144
− μ

3/2
2

12μ3
1λ

3/2

)

+ (x8 − 28x6 + 210x4 − 420x2+105
) ·
(

γ 3
1

1296
− μ

3/2
2

162μ3
1λ

3/2

)}
+o (λ−3/2).
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14. TRANSLATED GAMMA APPROXIMATION

This approximation was introduced by Bohman and Esscher (1963a,b) un-
der the name “G-method”. Independently, in the discussion of Bartlett (1965)
(where the Gamma approximation was introduced, see above), Jones remarked
that in a related situation (i.e. in the individual risk model) Taylor had already
used in 1952 a translated Gamma distribution whose first three moments were
equal to the correspondingmoments of the true distribution. Thus, he proposed
to do the same in the collective risk model situation considered by Bartlett. De-
spite the interest raised by Bartlett’s paper, Jones’ improvement received little
or no attention. The translated Gamma approximation was at last revived and
popularized by Seal (1977).

The idea is to approximate the centered and normalized sum using the ran-
dom variable γ1

4 (χ2
8

γ 21

− 8
γ 2
1
):

F (x) − P

{
γ1

4

(
χ2

8
γ 21

− 8

γ 2
1

)
≤ x
}

= −φ (x) · (x3 − 3x
) ·
(

γ2

24
− γ 2

1

16

)
− φ (x) ·

{(
x4 − 6x2 + 3

) ·
(

γ3

120
− γ 3

1

40

)

+ (x6 − 15x4 + 45x2 − 15
) ·
(

γ1γ2

144
− γ 3

1

96

)}
+ o

(
λ−3/2) .

The approximation has proved to be very accurate, especially in the right tail
(see Bohman and Esscher, 1963a, p. 207, Papush et al., 2001, p. 181), while in
the left tail it may give positive probability to negative losses (see Papush et al.,
2001, p. 178, Hardy, 2004).

The comparison between the NP2 and the Gamma approximations gen-
erated a discussion in the literature (see, e.g., Gendron and Crepeau, 1989, p.
255) as to which method was better, with Seal (1977, pp. 214–215) as a parti-
san of the Gamma approximation and Pentikäinen (1977, p. 285) of the NP2
one. Our results show that there is little to choose from the point of view of
the approximation error. Perhaps the main difference is that the Gamma ap-
proximation is uniform (in the sense that the error is uniformly of order λ−1

over the whole line) while as concerns the NP there is no proof of this kind of
result.

Starting from Seal (1977, p. 215), another topic that raised a certain
debate is the supposed independence of the error of the Gamma approx-
imation from γ1 (with, once more, Pentikäinen, 1977, p. 285 on the op-
posite side, see Gendron and Crepeau, 1989, p. 257). However, this claim
is not supported by our derivations, since the remainder term depends
on γ1.
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As concerns the dependence on x, the presence of a systematic pattern in
F (x)−P{ γ1

4 (χ2
8

γ 21

− 8
γ 2
1
) ≤ x} has already been remarked in empirical studies (see

Gendron andCrepeau, 1989, p. 257, Papush et al., 2001, p. 181) and is confirmed
by our formula. This can be seen also in the graphs of Section 18. Note that the
graph of the Gamma approximation is quite similar to the one in Buckley and
Eagleson (1988, p. 155) and in Choirat and Seri (2013, p. 2147).

15. BOWERS GAMMA APPROXIMATION

This kind of approximation has a longer history in Statistics than in Insurance
(see Seal, 1975/76 for an historical account). In the latter field, this approxi-
mation has been introduced in Bowers (1966), as a Laguerre expansion around
the (non-translated) Gamma approximation given above, much in the same way
that the Edgeworth series is an expansion in Hermite polynomials around the
normal distribution (see Heilmann, 1988, Section 3.3 for a unified presenta-
tion). Despite the fact that the series can be truncated at any desired order (pro-
vided the moments exist, see Hardy, 2004), Bowers mainly considers the fol-
lowing case, matching the first five moments of the original distribution. Pfen-
ninger (1974), apparently unaware of Bowers’ paper, has extended the treatment
to higher order expansions. The method has been criticized in Seal (1975/76),
where the full history of the method in Statistics is recalled and in Taylor (1977).
Heilmann (1988, p. 129) considers an approximation similar to the one below,
with B = C = 0.

Let α = λμ2
1

μ2
. Then, the approximation is:3

FB (x) = �
(
α + √

αx, α
)− A · (α + √

αx
)α
e−(α+√

αx)

·
{

1
� (α + 1)

− 2
(
α + √

αx
)

� (α + 2)
+
(
α + √

αx
)2

� (α + 3)

}

+B · (α + √
αx
)α
e−(α+√

αx)

·
{

1
� (α + 1)

− 3
(
α + √

αx
)

� (α + 2)
+ 3

(
α + √

αx
)2

� (α + 3)
−
(
α + √

αx
)3

� (α + 4)

}

−C · (α + √
αx
)α
e−(α+√

αx)

·
{

1
� (α+1)

−4
(
α+√

αx
)

� (α+2)
+6
(
α + √

αx
)2

� (α + 3)
−4
(
α + √

αx
)3

� (α + 4)
+
(
α + √

αx
)4

� (α + 5)

}
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where:

A=
(
μ1μ3 − 2μ2

2

)
μ2
1λ

6μ3
2

B =
(
μ2
1μ4 − 12μ2μ1μ3 + 18μ3

2

)
μ2
1λ

24μ4
2

C =
(
μ3
1μ5 − 20μ2μ

2
1μ4 + 120μ2

2μ1μ3 − 144μ4
2

)
μ2
1λ

120μ5
2

.

The method yields:

F (x) − FB (x)

= −φ (x) · (x5 − 10x3 + 15x
) ·
(

μ2

18μ2
1λ

+ γ 2
1

72
− μ3

18μ1μ2λ

)

−φ (x) ·
{(
x6 − 15x4 + 45x2 − 15

) ·
(

γ1γ2

144
− μ4

72μ1μ
3/2
2 λ3/2

)

+ (x8 − 28x6 + 210x4 − 420x2 + 105
) · γ1

1296

+ (−2x8 + 47x6 − 285x4 + 435x2 − 75
) · μ3

216μ2
1μ

1/2
2 λ3/2

+ (4x8 − 85x6 + 435x4 − 465x2 + 15
) · μ

3/2
2

324μ3
1λ

3/2

}
+ o

(
λ−3/2) .

As we will see in Section 18, the fit of this method is quite poor despite its com-
plexity (see Seal, 1975/76, p. 133, Hardy, 2004). The order of approximation
of the method is the same of the translated Gamma method, but its fit in the
right tail is worse, since the approximation error depends on the fourth and fifth
powers of xwhile it depends only on the third power for the translated Gamma
method.

16. INVERSE GAUSSIAN APPROXIMATION

We use the notation IG (m, b) as parameterized in Chaubey et al. (1998). If x0
is the left endpoint of the shifted inverse Gaussian distribution (not explicitly
considered in the original paper), its mean is m + x0, its variance mb and its

skewness 3
√

b
m . We match the first three moments takingm = 3μ2

2λ

μ3
, b = μ3

3μ2
and

x0 = μ1λ − m. The skewness of the approximating distribution is μ3

μ
3/2
2 λ1/2

, and
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the kurtosis is 15b
m = 5μ2

3

3λμ3
2
. Therefore, we get:

F (x) − P

{
IG (m, b) −m√

mb
≤ x
}

= −φ (x) · (x3 − 3x
) · 3γ2 − 5γ 2

1

72
− φ (x) ·

{(
x4 − 6x2 + 3

) ·
(

γ3

120
− 7γ 3

1

216

)

+ (x6 − 15x4 + 45x2 − 15
) ·
(

γ1γ2

144
− 5γ 3

1

432

)}
+ o

(
λ−3/2) .

Our computations show that, according to the second-order Edgeworth expan-
sion, the inverse Gaussian and the Gamma approximations are of comparable
accuracy. The leading polynomial appearing in both expansions is x

(
3 − x2

)
,

while the coefficient is γ2
24 − 5γ 2

1
72 for the IG and γ2

24 − γ 2
1
16 for the Gamma. Some te-

dious algebra shows that the IG yields a smaller absolute error when γ 2
1 < 12

19 ·γ2,
while in the reverse case the contrary is true. This does not rule out the possi-
bility that the term of order λ−3/2 reverses the order. This virtual equivalence
between Gamma and IG approximations has already been acknowledged in the
literature (see Chaubey et al., 1998, p. 230).

17. GAMMA–IG APPROXIMATION

A further approximation, proposed in Chaubey et al. (1998), is obtained as a
linear combination of the Gamma and the IG approximation given above. The
idea is to use:

F (x) − wP

{
γ1

4

(
χ2

8
γ 21

− 8

γ 2
1

)
≤ x
}

− (1 − w) P

{
IG (m, b) −m√

mb
≤ x
}

= −φ (x) · (x4 − 6x2 + 3
) ·
(

γ 3
1

24
+ γ3

120
− 2γ2γ1

45

)
+ o

(
λ−3/2)

where w = γ2− 5γ 21
3

3γ 21
2 − 5γ 21

3

= 10γ 2
1 −6γ2
γ 2
1

. The error is uniformly o
(
λ−1
)
. This proves that

the accuracy of both Gamma and IG approximations is uniformly improved
by taking a particular linear combination of the two (see Chaubey et al., 1998,
p. 230).
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FIGURE 1: Approximation errors for λ = 100 and shape parameter equal to 2.

18. COMPUTATIONS

In this section, we reproduce a limited computational study to show the rele-
vance of the previous results. Our aim is not to provide an empirical guidance
for which method is better in which situation (for this see Reijnen et al., 2005),
but only to assess whether and when the theoretical formulas provided above
offer a reliable picture of the true distribution.

We consider four alternative situations in which the random variable X is a
Gamma random variable with scale parameter 1 and shape parameter equal to
2 or 0.1. The results of the analysis are plotted in Figures 1–4. The 15 approx-
imations have been arranged in order of increasing theoretical precision from
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FIGURE 2: Approximation errors for λ = 10 and shape parameter equal to 2.

the left to the right and from top to down. Therefore, we first display the nor-
mal, lognormal andGamma approximations, characterized by an error of order
λ−1/2. Then, we represent the Edgeworth, NP2, NP2a, Adjusted NP2, Wilson–
Hilferty, Haldane A, translated Gamma, Bowers Gamma and inverse Gaussian
approximations, all annihilating terms up to order λ−1/2. At last, we display the
NP3,Haldane B andGamma–IG approximations, whose error is of order λ−3/2.
While in the text we considered the normalized cdf, namely P

{
S�
N ≤ x

}
, here we

transpose the results to the nonnormalized cdf P {SN ≤ x}. On the y-axis, we
represent, for each value x, the difference between the true cdf P {SN ≤ x} and
the approximate one (in gray), the approximation of this difference up to order
λ−1/2 (in dashed line), up to order λ−1 (in dotted line) and up to order λ−3/2 (in
dash-dot line). To increase comparability among approximations, the range of
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FIGURE 3: Approximation errors for λ = 100 and shape parameter equal to 0.1.

the y axis is the same for all the approximations with the same order of accu-
racy. The curve x 	→ P {SN ≤ x} is computed through the method described in
Appendix A, with an absolute error of at most 1 · 10−15. We have also estimated
x 	→ P {SN ≤ x} through the empirical cdf based on n points with n ranging
from n = 1 · 1010 to n = 1.2 · 1011, but the results were indistinguishable (apart
from the cases in which the empirical approximation had some fluctuations).

Here are the parameters used in the computations, together with the values
taken by the indexes γ1, γ2 and γ3:

• λ = 100, shape parameter 2 (Figure 1): γ1 = 0.1632993, γ2 = 0.03333333,
γ3 = 0.008164966;
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FIGURE 4: Approximation errors for λ = 10 and shape parameter equal to 0.1.

• λ = 10, shape parameter 2 (Figure 2): γ1 = 0.5163978, γ2 = 0.3333333,
γ3 = 0.2581989;

• λ = 100, shape parameter 0.1 (Figure 3): γ1 = 0.6331738, γ2 = 0.5918182,
γ3 = 0.7316036;

• λ = 10, shape parameter 0.1 (Figure 4): γ1 = 2.002271, γ2 = 5.918182,
γ3 = 23.13534.

Note that the values of γ1 as computed from Table 1 in Seal (1977) are 0.811501,
1.213861, 1.215901, 2.009974, 2.613988, 3.504514 and 3.838496, while those
in Table 1 of Pentikäinen (1977) are 0.0671, 0.1570, 0.2122, 0.3879, 0.4543,
0.5570, 0.7749, 0.8115, 1.2139, 1.2159, 1.5286, 1.7615, 1.8564, 2.7318, 3.4504
and 3.8385 (some of them are repeated in the two lists). Therefore, the proposed
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illustrations should reproduce quite faithfully most of the skewness values en-
countered in practice.

A first obvious remark concerns the fact that the expansions we provide are
much better the larger λ, because the o

(
λ−3/2

)
remainder term appearing in the

above formulas is smaller. The entity of the first neglected term of the Edge-
worth expansion is larger the larger are γ1 and γ2: in the present illustration,
this happens when the shape parameter is small. In particular when γ1 and γ2
are very large our expansions are not very precise. This is particularly evident
for the Bowers Gamma approximation; this seems to be due to the complexity
of the approximating function.

Moreover, our expansions are more reliable for the methods that match only
the lower orders of the Edgeworth approximations so that the NP3, Haldane
B and Gamma–IG curves are quite roughly approximated by our expansions
even for large λ. However, also in these cases the message is quite clear, since the
Edgeworth expansions provide the correct magnitude of the error especially in
the center and in the right tail of the distribution.

A striking fact that was not evident from the formulas (but is reliably re-
produced by their graphs) is the difference between NP2, NP2a and Adjusted
NP2: NP2 and Adjusted NP2, despite the similarity in the formulas, have often
very different behaviors and NP2a is reliable only for very small values of γ1
and not too large values of x. The (non-translated) Gamma approximation is
particularly bad, but the translated Gamma approximation provides a much
better fit.

A fact that was expected from the formulas is the similarity between the
translated Gamma and the IG approximations, as is the extreme precision of
the Gamma–IG approximation.

19. CONCLUSIONS

In this paper, we have compared several methods for the approximation of com-
pound Poisson distributions. The error of these methods has been studied using
series related to Edgeworth expansions. This allows us to formulate some gen-
eral rules for the approximation of these distributions.

The best approximation results are obtained using theGamma–IG,Haldane
B and NP3 approximations that require knowledge or estimation of four mo-
ments of the original claim distribution. The numerical computations suggest
that the Gamma–IG method has an advantage over the other two methods.

Slightly worse results are obtained through the Edgeworth, NP2, NP2a, ad-
justed NP2, Wilson–Hilferty, Haldane A, translated Gamma and inverse Gaus-
sian approximations using three moments of the original distribution. Among
them, the NP2a approximation has a tail behavior that is different from the one
of the original distribution and should be avoided as far as possible. The Bowers
Gamma achieves the same order of accuracy but requires five moments; more-
over, its performance is quite unreliable. As a general rule, we confirm the better
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performance of the NP2 approximation with respect to the Edgeworth one, as
well as the qualitative equivalence of the NP2, Gamma and inverse Gaussian
approximations.

At the bottom of the scale, the normal, lognormal and Gamma approxima-
tions require only two moments but perform quite poorly, except in exceedingly
large samples.

All in all, infinitely divisible distributions matching three or more moments
of the original distribution, namely Gamma–IG, translated Gamma, inverse
Gaussian, perform well with respect to similar approximations.

Despite these general instructions provide a quite clear ranking of the vari-
ousmethods, their performance can still be volatile. It is therefore advisable that,
whenever possible, the researcher interested in the computation of a compound
Poisson distribution uses exact methods, whose feasibility has been steadily in-
creasing in the last decades thanks to the progress in computing power.

NOTES

1. Conditions for convergence have been worked out in the classical case by Cramér (1946, p.
223) and Feller (1971, p. 542), and are indeed very restrictive.

2. However, note that also exact computation methods, such as the FFT and Panjer recursion,
are based on a preliminary estimation of the claim distribution (see, e.g., Lee and Lin, 2010 for
references) and on its discretization. The effects of these two steps are not completely understood,
despite some important steps have been done (seeGrübel andHermesmeier, 1999, 2000; Embrechts
and Frei, 2009).

3. Note that formula (7) in Hardy (2004) contains a slip since the sign before C should be a
minus.
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APPENDIX A. PROOFS

A.1. Edgeworth expansion for compound Poisson random variables

For the following result we need the definition of the Hermite polynomials {Hen (x)}, i.e. the
set of polynomials orthogonal with respect to the weighting function e− x2

2 :

∫
R

Hem (x) Hen (x) e− x2
2 dx =

√
2πδmnn!,

where δmn is Kronecker’s delta, i.e. the function taking value 1 if m = n and 0 otherwise. In
order to avoid possible confusions, it is important to remark that we are considering here the
probabilistic Hermite polynomials {Hen (x)}, and not the ones customarily used in mathe-
matics or physics, often denoted as {Hn (x)} (these notations are used, e.g., in Abramowitz
and Stegun, 1964, Table 22.2, p. 775 or in Olver et al., 2010, Table 18.3.1, p. 439). The first
Hermite polynomials are He0 (x) = 1, He1 (x) = x, He2 (x) = x2 − 1, He3 (x) = x3 − 3x
and He4 (x) = x4 − 6x2 + 3. For a longer list, see Olver et al. (2010, 18.5.19, p. 443) and
Abramowitz and Stegun (1964, Table 22.12).

Theorem 3. Consider a compound Poisson random variable with parameter λ. Let μ j be the
j-th noncentral moment of the random variable X, and ϕ (t) its characteristic function. Suppose
that μs < +∞ with s ≥ 3, and lim sup|t|→∞ |ϕ (t)| < 1. Then, if F (x) = P{ SN−ESN√

V(SN)
≤ x}:

F (x) = � (x) +
s−2∑
ν=1

λ− ν
2 ·
∑
{km}ν

φ (x) Heν+2k−1 (x) ·
ν∏

m=1

1
km!

(
μm+2

(m+ 2)!μm+2
2

)km
+ o

(
λ− s−2

2

)

where
∑

{km}ν indicates that summation is performed over all non-negative integer solutions of
k1 + 2k2 + · · · + νkν = ν, k = k1 + · · · + kν , and the remainder term is uniform.

Proof of Theorem 3. 1. We start remarking that the characteristic function of SN−ESN√
V(SN)

is

ω(tλ−1/2) � exp{λ · (ϕ(t · λ−1/2μ
−1/2
2 ) − 1) − i tλ1/2μ1μ

−1/2
2 }. Define ξ(tλ−1/2) � t−2 · {λ · (ϕ(t ·

λ−1/2μ
−1/2
2 ) − 1) − i tλ1/2μ1μ

−1/2
2 + t2/2} so that lnω (t) = t2ξ (t) − t2/2, and ξs

(
tλ−1/2

)
�∑s+2

j=3
i j

j ! · t j−2 · λ− j/2+1μ jμ
− j/2
2 . We approximate ω

(
tλ−1/2

)
through:

ωs
(
tλ−1/2

)
� e− 1

2 t
2 ·

s∑
k=0

1
k!

· {ξs (tλ−1/2
)}k = e− 1

2 t
2 ·

s∑
k=0

1
k!

·
⎧⎨
⎩

s+2∑
j=3

i j

j !
· t jλ− j

2 +1μ jμ
− j

2
2

⎫⎬
⎭
k

.
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The distance |ω (t) − ωs (t)| can be bounded using Lemma 3 in Marsh (1973):

∣∣ω (tλ−1/2
)− ωs

(
tλ−1/2

)∣∣
= e− 1

2 t
2 ·
∣∣∣∣∣∣et

2ξ(tλ−1/2) −
s∑

k=0

1
k!

·
⎧⎨
⎩

s+2∑
j=3

i j

j !
· t jλ− j

2 +1μ jμ
− j

2
2

⎫⎬
⎭
k∣∣∣∣∣∣

≤ e− 1
2 t

2
ec ·
{∣∣t2ξ (tλ−1/2

)− t2ξs
(
tλ−1/2

)∣∣+
∣∣t2ξs (tλ−1/2

)∣∣s+1

(s + 1)!

}
. (A.1)

Now, for any ε > 0 there is a δ > 0 such that:

∣∣ξ (tλ−1/2
)− ξs

(
tλ−1/2

)∣∣ ≤ ε
∣∣tλ−1/2

∣∣s
when |t| ≤ δλ1/2. Moreover:

∣∣t2ξs (tλ−1/2
)∣∣ ≤ t2

∣∣ξ (tλ−1/2
)− ξs

(
tλ−1/2

)∣∣+ t2
∣∣ξ (tλ−1/2

)∣∣
≤ ε |t|2+s λ−s/2 + λ ·

∣∣∣ϕ (t · λ−1/2μ
−1/2
2

)
− 1 − i tλ−1/2μ1μ

−1/2
2 + t2λ−1/2

∣∣∣
≤ ε |t|2+s λ−s/2 + 1

6
|t|3 λ−1/2μ3μ

−3/2
2

when |t| ≤ δλ1/2. Therefore the term in braces in Equation (A.1) is majorized by a constant
times |t|s λ−s/2 for |t| ≤ δλ1/2. Reasoning as in Marsh (1973), the result is obtained.

A.2. NP2 approximation

We expand
√
1 + γ 2

1
9 + 2γ1

3 · x in a Taylor series in powers of λ−1/2, obtaining:

3
γ1

⎡
⎣
√
1 + γ 2

1

9
+ 2γ1

3
· x− 1

⎤
⎦ = x+ (1 − x2

) · γ1

6
+ x

(
x2 − 1

) · γ 2
1

18

− (1 − 6x2 + 5x4
) · γ 3

1

216
+ O

(
λ−2
)
.

Then we do the same with �
(

3
γ1
[
√
1+ γ 21

9 + 2γ1
3 ·x−1]

)
:

�

⎛
⎝ 3

γ1

⎡
⎣
√
1 + γ 2

1

9
+ 2γ1

3
· x− 1

⎤
⎦
⎞
⎠

= � (x) + φ (x)
(
1 − x2

) · γ1

6
+ φ (x) x

(−x4 + 6x2 − 5
) · γ 2

1

72

+ φ (x)
(−x8 + 16x6 − 60x4 + 52x2 − 7

) · γ 3
1

1296
+ O

(
λ−2
)
.
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A.3. NP2a approximation

A limited development in powers of λ−1/2 yields:

�
(
x− γ1

6
· (x2 − 1

)) = � (x) − φ (x)
(
x2 − 1

) · γ1

6
− φ (x) x

(
x2 − 1

)2 · γ 2
1

72

−φ (x)
(
x2 − 1

)4 · γ 3
1

1296
+ O

(
λ−2
)
.

A.4. Adjusted NP2 approximation

We first expand
√
1+ 1

b0
·x+ a20

4b20
around b0 = 0, getting:

− a0
2b0

+
√
1 + 1

b0
· x+ a20

4b20

= x+ (1 − x2
) · b0 + x

(−1 + 2x2
) · b20 + x2

(
3 − 5x2

) · b30 + O
(
b40
)
.

A further limited development yields:

�

(
− a0
2b0

+
√
1 + 1

b0
· x+ a20

4b20

)

= � (x) + φ (x)
(
1 − x2

) · b0 + φ (x) x
(−x4 + 6x2 − 3

) · b
2
0

2

+φ (x)
(−x8 + 16x6 − 54x4 + 28x2 − 1

) · b
3
0

6
+ O

(
b40
)
.

From Ramsay (1991, Equation (4)), we have γ1 = 6b0 − 4b30 or b0 = 1
6γ1 + 1

324γ
3
1 + O

(
γ 5
1

)
and:

�

(
− a0
2b0

+
√
1 + 1

b0
· x+ a20

4b20

)

= � (x) + φ (x)
(
1 − x2

) · γ1

6
+ φ (x) x

(−x4 + 6x2 − 3
) · γ 2

1

72

+φ (x)
(−x8 + 16x6 − 54x4 + 24x2 + 3

) · γ 3
1

1296
+ O

(
λ−2
)
.

A.5. NP3 approximation

In order to find the y that solves x = y+ γ1
6 · (y2 − 1) + γ2

24 · (y3 − 3y) − γ 2
1
36 · (2y3 − 5y), we

use Lagrange’s inversion formula (see Whittaker and Watson, 1996, p. 133). In the previous
source, we make the identifications ζ � y, a � x, t � λ−1/2, f � � and ϕ (ζ ) � − μ3

6μ3/2
2

·
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(
ζ 2 − 1

)− μ4
24μ2

2λ
1/2 · (ζ 3 − 3ζ

)+ μ2
3

36μ3
2λ

1/2 · (2ζ 3 − 5ζ
)
. At last, we get:

� (y) = � (x) − φ (x)
(
x2 − 1

) · γ1

6
− φ (x)

(
x3 − 3x

) · γ2

24

+ φ (x) x
(−x4 + 10x2 − 15

) · γ 2
1

72

− φ (x)
(
x6 − 9x4 + 15x2 − 3

) · γ2γ1

144

+ φ (x)
(−x8 + 28x6 − 162x4 + 208x2 − 37

) · γ 3
1

1296
+ o

(
λ−3/2

)
.

A.6. Wilson–Hilferty approximation

The proof simply proceeds expanding
(
1 + xγ1

2

)1/3
around γ1 = 0:

(
1 + xγ1

2

)1/3
= 1 + x

γ1

6
− x2

γ 2
1

36
+ x3

5γ 3
1

648
− x4

5γ 4
1

1944
+ O

(
γ 5
1

)
[(

1 + xγ1

2

)1/3
−
(
1 − γ 2

1

36

)]
6
γ1

= x− (x2 − 1
) γ1

6
+ x3

5γ 2
1

108
− x4

5γ 3
1

324
+ O

(
γ 4
1

)

and �
(
x− (x2 − 1

)
γ1
6 + x3

5γ 2
1

108 − x4
5γ 3

1
324 + O

(
γ 4
1

))
around γ1 = 0.

A.7. Haldane A approximation

From the formulas it is evident that both b and c are O
(
λ−1/2

)
, while h = O (1). Therefore:

(1 + bx)h = 1 + hbx+ h (h − 1)
2

b2x2 + h (h − 1) (h − 2)
6

b3x3

+h (h − 1) (h − 2) (h − 3)
24

b4x4 + O
(
b5
)

my = 1 − 1
2
b2h (1 − h) − 1

8
b4h (1 − h) (2 − h) (3h − 1)

σ−1
y = c−1

(
1 + b2

2
(1 − h) (3h − 1)

)−1/2

= (hb)−1

{
1 − b2

4
(1 − h) (3h − 1) + 3

32
b4 (1 − h)2 (3h − 1)2 + O

(
b6
)}
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and:

(1 + bx)h −my

σy
= x+ b

(h − 1)
2

(
x2 − 1

)

+ b2
(h − 1)

12
x
[
2 (h − 2) x2 + 3 (3h − 1)

]
+ b3

(h − 1)
24

{
(h − 2)

[
(h − 3) x4 + 3 (3h − 1)

]
+ 3 (3h − 1) (h − 1)

(
x2 − 1

)}+ O
(
b4
)
.

Expanding �(
(1+bx)h−my

σy
) around �(x) and replacing b, c and h with their expressions, we

get the final result:

�

(
(1 + bx)h −my

σy

)

= � (x) − λ−1/2φ (x)
(
x2 − 1

) μ3

6μ3/2
2

− λ−1φ (x) x
{(

3x4 − 10x2 − 15
) μ2

3

216μ3
2

− (x2 − 3
) μ3

18μ1μ2

}

− λ−3/2φ (x)

{(
x8 − 8x6 − 6x4 + 32x2 + 1

) μ3
3

1296μ9/2
2

+ (−2x6 + 11x4 − 12x2 + 9
) μ2

3

216μ1μ
5/2
2

+ (x4 − 3
) μ3

36μ2
1μ

1/2
2

}
+ O

(
λ−2
)
.

A.8. Haldane B approximation

The method of proof is the same as for Haldane A approximation, but the values of b, c and
h differ. For Haldane B approximation, we finally get:

�

(
(1 + bx)h −my

σy

)

= � (x) − φ (x)
(
x2 − 1

) γ1

6
− φ (x) x

{(
x4 − 10x2 + 15

) γ 2
1

72
+ (x2 − 3

) γ2

24

}

− φ (x)
{(
x8 − 28x6 + 204x4 − 88x2 − 209

) γ 3
1

1296

+ (2x6 − 31x4 + 12x2 + 51
) γ1γ2

288
− (3 − x4

) γ 2
2

64γ1

}
+ o

(
λ−3/2

)
.
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A.9. Lognormal approximation

The series expansion is obtained expanding around λ−1 = 0, first:

ln
1
2

(
1 + μ2

μ2
1
λ−1
)

2
+ 1

ln
1
2

(
1 + μ2

μ2
1
λ−1
) · ln

(
1 + x · μ

1/2
2

μ1
λ−1/2

)

= x− (x2 − 1
) μ

1/2
2

2μ1
λ−1/2 + (4x3 + 3x

) μ2

12μ2
1

λ−1

− (2x4 + x2 + 1
) μ

3/2
2

8μ3
1

λ−3/2 + O
(
λ−2
)

and then:

�

⎛
⎜⎜⎝
ln

1
2

(
1 + μ2

μ2
1
λ−1
)

2
+

ln
(
1 + x · μ

1/2
2
μ1

λ−1/2

)

ln
1
2

(
1 + μ2

μ2
1
λ−1
)

⎞
⎟⎟⎠

= � (x) − λ−1/2φ (x)
(
x2 − 1

) μ
1/2
2

2μ1

+ λ−1φ (x)
(−3x5 + 14x3 + 3x

) μ2

24μ2
1

+ λ−3/2φ (x)
(−x8 + 12x6 − 20x4 − 8x2 − 7

) μ
3/2
2

48μ3
1

+ O
(
λ−2
)
.

A.10. Gamma approximation

Note that χ 2
n ∼ �

(
n
2 ,

1
2

)
. On the other hand, from the Edgeworth expansion of a sum of

independent and identically distributed random variables:

P
{
(2n)−1/2 (χ 2

n − n
) ≤ x

}
= � (x) − φ (x)

{
κ3

6
He2 (x) + κ4

24
He3 (x) + 10κ2

3

720
He5 (x)

+ κ5

120
He4 (x) + 35κ3κ4

5040
He6 (x) + 280κ3

3

362880
He8 (x)

}

= � (x) − φ (x)
{

21/2

3n1/2
He2 (x) + 1

2n
He3 (x) + 1

9n
He5 (x)

+ 23/2

5n3/2
He4 (x) + 21/2

6n3/2
He6 (x) + 21/2

81n3/2
He8 (x)

}

= � (x) − φ (x)
21/2

3n1/2
(
x2 − 1

)− φ (x)
1

18n
x
(
2x4 − 11x2 + 3

)

− 21/2

810n3/2
φ (x)

(
10x8 − 145x6 + 399x4 − 69x2 − 3

)
. (A.2)

The result follows upon taking n = 2λμ2
1

μ2
.
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A.11. Translated Gamma approximation

The result follows from (A.2) upon taking n = 8
γ 2
1
.

A.12. Bowers Gamma approximation

Using the formulas in Tricomi and Erdélyi (1951), we get:

(
α + √

αx
)
� (α)

� (α + 1)
− 2

(
α + √

αx
)2

� (α)

� (α + 2)
+
(
α + √

αx
)3

� (α)

� (α + 3)

= α−1
(
x2 − 1

)+ α−3/2
(
x3 − 5x

)+ α−2
(−7x2 + 5

)
+α−5/2

(−3x3 + 17x
)+ O

(
α−3
)

(
α + √

αx
)
� (α)

� (α + 1)
− 3

(
α + √

αx
)2

� (α)

� (α + 2)
+ 3

(
α + √

αx
)3

� (α)

� (α + 3)
−
(
α + √

αx
)4

� (α)

� (α + 4)

= α−3/2
(−x3 + 3x

)+ α−2
(−x4 + 12x2 − 7

)+ α−5/2
(
15x3 − 43x

)+ O
(
α−3
)

(
α + √

αx
)
� (α)

� (α + 1)
− 4

(
α + √

αx
)2

� (α)

� (α + 2)
+ 6

(
α + √

αx
)3

� (α)

� (α + 3)

−4

(
α + √

αx
)4

� (α)

� (α + 4)
+
(
α + √

αx
)5

� (α)

� (α + 5)

= α−2
(
x4 − 6x2 + 3

)+ α−5/2
(
x5 − 22x3 + 43x

)+ O
(
α−3
)
.

On the other hand, consider the Gamma random variable �α defined by the density xα−1e−x
�(α)

.

The density of the standardized version �α−α√
α

is f �
α (x) = (α+√

αx)
α−1

e−(α+√
αx)

�(α)

√
α. Now, f �

α

admits an Edgeworth expansion:

f �
α (x) = φ (x) ·

{
1 + α−1/2

[
He2 (x)

3

]
+ α−1

[
He3 (x)

4
+ He5 (x)

18

]

+α−3/2

[
He4 (x)

5
+ He6 (x)

12
+ He8 (x)

162

]
+ o

(
α−3/2

)}
.

This shows that the approximation can be expressed as �
(
α + √

αx, α
)
plus φ (x) times a

polynomial in α−1/2 and x. The difference F (x)−�
(
α + √

αx, α
)
has already been computed

for the Gamma method.

A.13. Inverse Gaussian approximation

Since the IG (m, b) distribution is infinitely divisible and therefore closed under addition, the
following Edgeworth expansion holds:
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P

{
IG (m, b) −m√

mb
≤ x
}

= � (x) − φ (x)
{
He2 (x)

κ3

6
+ He3 (x)

κ4

24
+ He5 (x)

10κ2
3

720
+ He4 (x)

κ5

120

+ He6 (x)
35κ3κ4
5040

+ He8 (x)
280κ3

3

362880

}
+ O

(
λ−2
)

= � (x) − φ (x)

{
He2 (x)

(
b
m

)1/2
2

+ He3 (x)
5 b
m

8
+ He5 (x)

b
m

8

+ He4 (x)
7
(
b
m

)3/2
8

+ He6 (x)
5
(
b
m

)3/2
16

+ He8 (x)

(
b
m

)3/2
48

}
+ O

(
λ−2
)
.

Replacing the values of m and b, we get:

P

{
IG (m, b) −m√

mb
≤ x
}

= � (x) − φ (x)
{
He2 (x)

γ1

6
+ He3 (x)

5γ 2
1

72
+ He5 (x)

γ 2
1

72

+ He4 (x)
7γ 3

1

216
+ He6 (x)

5γ 3
1

432
+ He8 (x)

γ 3
1

1296

}
+ O

(
λ−2
)
.

A.14. Gamma–IG approximation

From the formulas seen above, we get:

w · P

{
γ1

4

(
χ 2

8
γ 21

− 8

γ 2
1

)
≤ x

}
+ (1 − w) · P

{
IG (m, b) −m√

mb
≤ x
}

= w ·
{
� (x) + φ (x)

(
1 − x2

) · γ1

6
+ φ (x) x

(−2x4 + 11x2 − 3
) · γ 2

1

144
+ o

(
λ−3/2

)}

+ (1 − w) ·
{
� (x) + φ (x)

(
1 − x2

) · γ1

6
+ φ (x) x

(−x4 + 5x2
) · γ 2

1

72
+ o

(
λ−3/2

)}

= � (x) + φ (x)
(
1 − x2

) · γ1

6
+ φ (x) x

(−x4 + 10x2 − 15
) · γ 2

1

72

+ φ (x) x
(
3 − x2

) · γ2

24
+ O

(
λ−2
)
.

This proves the result.
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A.15. Exact computation of the cdf for the Gamma case

We want to compute the function F (x) = P

{
SN−ESN√

V(SN)
≤ x
}
to a certain degree of accuracy.

We have:

P {SN ≤ y} =
∞∑
k=0

e−λλk

k!
· P {Sk ≤ y}

F (x) =
∞∑
k=0

e−λλk

k!
· P

{
Sk ≤ ESN + x

√
V (SN)

}
.

We stop the sum at K , obtaining FK (x) = ∑K
k=0

e−λλk

k! · P{Sk ≤ ESN + x
√

V (SN)}. The
remaining error can be majorized as εK �

∑∞
k=K+1

e−λλk

k! , and the value K such that εK is
smaller than a predetermined threshold can be obtained without effort from the cdf of the
Poisson distribution. The computation is simplified by the fact that if Xi ∼ � (m, θ), then
Sk ∼ � (km, θ).


