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GENERIC CONSISTENCY FOR APPROXIMATE STOCHASTIC
PROGRAMMING AND STATISTICAL PROBLEMS\ast 

CHRISTIAN HESS\dagger AND RAFFAELLO SERI\ddagger 

Abstract. In stochastic programming, statistics, or econometrics, the aim is in general the
optimization of a criterion function that depends on a decision variable \theta and reads as an expectation
with respect to a probability \BbbP . When this function cannot be computed in closed form, it is
customary to approximate it through an empirical mean function based on a random sample. On
the other hand, several other methods have been proposed, such as quasi--Monte Carlo integration
and numerical integration rules. In this paper, we propose a general approach for approximating such
a function, in the sense of epigraphical convergence, using a sequence of functions of simpler type
which can be expressed as expectations with respect to probability measures \BbbP n that, in some sense,
approximate \BbbP . The main difference with the existing results lies in the fact that our main theorem
does not impose conditions directly on the approximating probabilities but only on some integrals
with respect to them. In addition, the \BbbP n's can be transition probabilities, i.e., are allowed to depend
on a further parameter, \xi , whose value results from deterministic or stochastic operations, depending
on the underlying model. This framework allows us to deal with a large variety of approximation
procedures such as Monte Carlo, quasi--Monte Carlo, numerical integration, quantization, several
variations on Monte Carlo sampling, and some density approximation algorithms. As by-products, we
discuss convergence results for stochastic programming and statistical inference based on dependent
data, for programming with estimated parameters, and for robust optimization; we also provide a
general result about the consistency of the bootstrap for M -estimators.
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1. Introduction. In stochastic programming, statistics, or econometrics, one
often looks for the solution of optimization problems of the following form (see, e.g.,
[9, Page 332]):

(1.1) inf
\theta \in \Theta 

\BbbE \BbbP g(\cdot , \theta ) = inf
\theta \in \Theta 

\int 
\BbbR q

g(y, \theta )\BbbP (dy),

where \Theta is a Borel subset of \BbbR p and \BbbP is a probability measure defined on Y = \BbbR q en-
dowed with its Borel \sigma -field \scrB (Y) (but more general spaces can be considered).1 Most
of the time, the mean functional \BbbE \BbbP g(\cdot , \theta ) cannot be explicitly or easily calculated.
Fortunately, there are situations where it is possible to approximate problem (1.1) by
a sequence of more tractable problems where \BbbP is replaced with a probability \BbbP n. In
this approximation process, it is expected that the optimization problem relative to
\BbbP n, namely

(1.2) inf
\theta \in \Theta 

\BbbE \BbbP n
g(\cdot , \theta ) = inf

\theta \in \Theta 

\int 
\BbbR q

g(y, \theta )\BbbP n(dy),
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is simpler than (1.1) and that the sequence \BbbP n converges to \BbbP in some sense, for
example, in the sense of narrow (or weak2) convergence. Often, the function to be
minimized can be expressed as the expectation

(1.3) \BbbE \BbbQ g(Y, \theta ) =

\int 
\Omega 

g(Y (\omega ), \theta )\BbbQ (d\omega ),

where Y is an \BbbR q-valued random variable defined on a probability space (\Omega ,\scrA ,\BbbQ ). In
such a case, \BbbP = \BbbQ Y is the image measure3 of \BbbQ by Y . If a sample of copies of the
random variable Y , say (Yi)i=1,...,n, is available, the expectation can be approximated
through the empirical mean. The corresponding approximating probabilities \BbbP n are
the transition probabilities given by

(1.4) \BbbP n(\omega , dy) =
1

n

n\sum 
i=1

\delta Yi(\omega )(dy), \omega \in \Omega , n \geq 1,

where \delta Yi(\omega ) stands for the Dirac measure at Yi(\omega ). This is the basis of the so-called
M -estimation used in statistics and econometrics (see, e.g., [40, Chapter III]), that
is, estimation obtained by optimizing a function of the sample with respect to one or
several parameters.

Thus, it is natural to look for conditions under which the solution of the approxi-
mating problem (1.2) converges almost surely to the solution of the original problem,
namely, problem (1.1). To this aim, it is common to assume that (Yi)i=1,...,n is a sam-
ple of independent and identically distributed (i.i.d.) copies of the random variable Y .
By the Glivenko--Cantelli theorem, the sequence of approximating objective functions
converges \BbbQ -almost surely on \Omega and uniformly on \Theta to the original objective function
as n goes to infinity:

sup
\theta \in \Theta 

\bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

g(Yi(\omega ), \theta ) - \BbbE \BbbQ g(Y, \theta )

\bigm| \bigm| \bigm| \bigm| \rightarrow 0, \BbbQ -a.s.

Under suitable technical assumptions, this implies the convergence of minimizers.
In the present paper, we shall rather make use of epigraphical convergence (epi-

convergence for short) for sequences of functions defined on a metric space \Theta (and
depending on a random parameter). The motivation is that epigraphical convergence
holds under weaker assumptions than uniform convergence, but is equally well-suited
for approximating the value and the solution of a minimization problem. In particular,
under suitable compactness assumptions on the parameter space, epi-convergence
entails the convergence of infima and minimizers (see Appendix A or, e.g., [6, 19, 33]
for a more detailed presentation). In fact, unlike uniform convergence, epi-convergence
is a one-sided concept. A symmetric notion, called hypographical convergence, enjoys
similar properties with respect to maximization problems. This immediately follows
from the fact that hypo-convergence of a sequence (fn)n\geq 1 of extended real-valued
functions is equivalent to epi-convergence of the sequence ( - fn).

If we take (Yi)i=1,...,n as an i.i.d. sequence and  - g as the logarithm of a density,
problem (1.2) becomes a maximum likelihood estimation (MLE) problem. This has
been covered in [33], where it was shown that almost-sure hypographical convergence
of the sequence of the likelihood functionals implies almost-sure convergence of the

2As is known, weak\ast convergence would be more appropriate.
3Recall that \BbbQ Y is defined by \BbbQ Y (B) = \BbbQ (Y  - 1(B)) for all B \in \scrB (Y).
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sequence of maximum likelihood estimators to the true value, say \theta 0, of the param-
eter. The same structure is shared by the Monte Carlo approximation approach to
stochastic programming, but in this case g is a more general function (see, e.g., [9,
Chapter 9] or [64]).4

A first novelty of our approach is that our main results (Theorems 3.1 and 3.2) do
not impose conditions directly on the probabilities \BbbP n that approximate \BbbP , but only
on some integrals with respect to them. A second novelty is that the \BbbP n's are allowed
to be transition probabilities, i.e., to depend on a random parameter. As we shall
see, this is an important issue that arises quite naturally in applications. Another
advantage of our approach lies in the fact that it is not restricted to the i.i.d. case.
Indeed, it is possible to derive approximation results for problem (1.1) using more
general sequences of random observations, such as pairwise i.i.d., ergodic stationary,
and asymptotically mean stationary sequences, in which some kind of dependence is
present.

For example, if the observations (Yi)i=1,...,n display some dependence, pseudo-
maximum likelihood estimation (PMLE) is obtained, supposing that  - g is the loga-
rithm of the marginal density of the process (see [16, section 2.5]). The framework
can also accommodate conditional maximum likelihood estimation, provided  - g is
replaced by the logarithm of the conditional density of Yi given a short section of the
past of (Yi)i=1,...,n, say Yi - 1, . . . , Yi - k for some positive integer k.

At this point, let us say a word about the adjective ``generic,"" which appears in
the title. By this, we mean that our model can be applied to a wide category of
problems sharing the same structure. Further, the model is versatile in that it can
take into account many variants, as will be illustrated by applications. In particular,
the use of epi-convergence and, on the probabilistic side, of transition probabilities
permits very general results. On the other hand, our first main result (Theorem 3.1)
can be regarded as a generic strong law of large numbers (SLLN) for integrands and
can be applied to derive an SLLN for random sets (see, e.g., [16]).

Results related to ours can be found in the literature, for example, on the epi-
convergence of discretizations for various optimization problems or integration quadra-
tures (see, e.g., [54, 55, 52, 53]). In those works, however, the approximating proba-
bilities \BbbP n are not transition probabilities, which prevents the researcher from dealing
with a large class of situations. In fact, the consideration of transition probabilities
is sometimes necessary in order to deal with subtle probabilistic issues, as shown in
subsection 4.5.

A first version of Theorem 3.1 was given in [17] with an application to ergodic
theory. In the present paper, we also deal with the convergence of minimizers and
provide a larger variety of applications, for which precise statements and proofs are
provided.

The paper is organized as follows. In section 2, we introduce the general frame-
work of our approach and illustrate it with a few introductory examples. The main
results are contained in section 3. Theorem 3.1 provides a sufficient condition under
which the sequence of approximating objective functions epi-converges to the original
one. The convergence of minimizers is addressed by Theorem 3.2. These results are
illustrated by various applications presented in section 4 and Appendix B. Several
of them, such as Monte Carlo and quasi--Monte Carlo methods, have been exten-
sively used in stochastic programming. Others, such as numerical integration rules
and quantization, have been proposed more recently. Some others, such as variants of

4The case in which the space \Theta is discrete has been covered in [42, 18].
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Monte Carlo methods and density approximation techniques, seem to be new. We also
present convergence results for stochastic programming and statistical inference based
on dependent data, for programming with estimated parameters (subsection 4.3) and
for robust optimization (subsection 4.6). In addition, we provide a general result
in connection with the strong consistency of the bootstrap for M -estimators (sub-
section 4.4) and another dealing with U -statistics (subsection 4.5). The proofs are
deferred to section 5. A short presentation of epi-convergence is provided in Ap-
pendix A. Further applications are briefly presented in Appendix B.

2. Approximation methods: A general framework. Consider a function
g : Y\times \Theta \rightarrow \BbbR , where Y is a metric space endowed with its Borel \sigma -field \scrB (Y) and \Theta 
is a separable5 metric space. As in the introduction, we consider problem (1.1), and we
assume that it admits a unique solution. As already mentioned, we are interested in
conditions under which the sequence of solutions of problem (1.2), the approximating
problem, converges to the solution of (1.1) as n tends to infinity. This is why our
main goal is to derive a.s. epi-convergence results for the above sequence. In a lot
of models, the \BbbP n's are transition probabilities, i.e., they depend on a parameter.
Consequently, it is necessary to introduce a second probability space (\Xi ,\scrX , \mu ), whose
generic element is denoted by \xi . The role that the latter space can play is illustrated
in the following short examples.

Example 2.1. Consider the case of quasi--Monte Carlo (QMC) integration with
respect to the Lebesgue measure on the unit hypercube. Let f be a real-valued
function defined on Y. Suppose we have a configuration (yi)i=1,...,n of QMC points.
Then it is possible to define the empirical probability \BbbP n by

(2.1) \BbbP n(B) =
1

n

n\sum 
i=1

\delta yi(B), B \in \scrB (Y),

where (yi)i\geq 1 is a low discrepancy sequence and \delta y(\cdot ) is a Dirac delta. The integral\int 
\bfY 
f(y)\BbbP (dy) can be approximated by\int 

\bfY 

f(y)\BbbP n(dy) =
1

n

n\sum 
i=1

f(yi).

Here, no parameter such as \xi is needed.

Example 2.2. Consider Monte Carlo integration through a sample of i.i.d. random
variables (Yi)i=1,...,n defined on the measurable space (\Omega ,\scrA ). In this case, \BbbP n is given
by (1.4). Here, the parameter \xi is present and equal to \omega , that is, the measurable
space (\Xi ,\scrX ) is equal to (\Omega ,\scrA ).

Example 2.3. Consider now a more sophisticated Monte Carlo integration proce-
dure. Suppose we also draw a sample of nonnegative weights (Wi,n)i=1,...,n defined
on a measurable space (\Lambda ,\scrL ) and summing to 1, i.e.,

\sum n
i=1Wi,n(\lambda ) = 1 for all \lambda \in \Lambda .

These weights can be (and in most cases are) independent of the sample (Yi)i=1,...,n.
Thus, it is possible to take (\Xi ,\scrX ) = (\Lambda \times \Omega ,\scrL \otimes \scrA ), \xi = (\lambda , \omega ), and \BbbP n defined by
the more general formula
(2.2)

\BbbP n(\xi ,B) =

n\sum 
i=1

Wi,n(\lambda ) \cdot \delta Yi(\omega )(B), \xi = (\lambda , \omega ) \in \Lambda \times \Omega , B \in \scrB (Y), n \geq 1.

This is, for example, the bootstrap case, which will be examined in subsection 4.4.

5That is, it contains a dense countable subset.
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All the other examples described in section 4 and Appendix B can be embedded in
this framework. In a precise probabilistic setting, each \BbbP n is defined as the following
mapping:

(2.3)
\BbbP n : \Xi \times \scrB (Y) \rightarrow [0, 1]

(\xi ,B) \mapsto \rightarrow \BbbP n(\xi ,B)

such that
\bullet for any \xi \in \Xi , \BbbP n(\xi , \cdot ) is a probability measure on (Y,\scrB (Y));
\bullet for any B \in \scrB (Y), \BbbP n(\cdot , B) is \scrX -measurable.

Thus, \BbbP n is a transition probability on \Xi \times \scrB (Y) (see, e.g., [59, Chapter III] for the
basic properties of this object). For those objects, the following type of convergence is
used. Given a positive measure \mu on (\Xi ,\scrX ), a sequence (\BbbP n) of transition probabilities
is said to converge to the probability \BbbP , as n goes to +\infty , if \BbbP n(\xi , \cdot ) converges narrowly
to \BbbP for \mu -almost all \xi \in \Xi . This sort of convergence (or variants of it) has been used
in several fields, especially in the theory of Young measures (see, e.g., [8, 69]).6 When
\BbbP n is a transition probability, the integral appearing in (1.2) becomes

(2.4) \BbbE \BbbP n(\xi ,\cdot ) g(\cdot , \theta ) =
\int 
\bfY 

g(y, \theta )\BbbP n(\xi , dy).

3. Main results. In this section, we state our main results on almost-sure epi-
convergence for the objective functions of approximate stochastic programming prob-
lems and on the convergence of minimizers. We consider a separable metric space
(\Theta , d) endowed with its Borel \sigma -field \scrB (\Theta ), a metric space (Y, \rho ) endowed with its
Borel \sigma -field \scrB (Y), and a probability measure \BbbP defined on (Y,\scrB (Y)). An extended
real-valued function g : Y \times \Theta \rightarrow \BbbR is called an integrand7 if it is \scrB (Y) \otimes \scrB (\Theta )-
measurable.8 It is said to be a normal integrand if g(y, \cdot ) is also lower semicontinuous
(l.s.c.) for \BbbP -almost all y \in Y and is said to be k-Lipschitz on \Theta if, for \BbbP -almost all
y \in Y and for all \theta , \theta \prime \in \Theta ,

| g(y, \theta ) - g(y, \theta \prime )| \leq kd(\theta , \theta \prime ).

It is said to be nonnegative if, for \BbbP -almost every y \in Y, g(y, \cdot ) takes on its values in
[0,+\infty ]. Given a normal integrand g and an integer k \geq 1, the Lipschitz approximation
of order k of g (with respect to \theta ) is the function gk defined by

gk(y, \theta ) = inf
\theta \prime \in \Theta 

\{ g(y, \theta \prime ) + kd(\theta , \theta \prime )\} , y \in Y, \theta \in \Theta ,

where k is a superscript. Like g, gk is a normal integrand (see, e.g., [33, Propo-
sition 4.4]). Finally, let \Theta 0 denote a dense countable subset of \Theta and assume the
following hold.

(A1) g is a nonnegative normal integrand on Y\times \Theta and the function \theta \mapsto \rightarrow \BbbE \BbbP g(\cdot , \theta )
is not identically +\infty on \Theta .

(A2) (\Xi ,\scrX , \mu ) is a probability space and (\BbbP n) is a sequence of transition probabil-
ities defined on \Xi \times \scrB (Y) (see (2.3)).

6In that theory, the limit probability \BbbP may depend on \xi , but in the present paper it does not,
i.e., \BbbP is a probability with the usual meaning.

7Etymologically, ``integrand"" means ``what is to be integrated.""
8For real-valued functions, this corresponds exactly to the definition of a measurable random real

function in [27, Definition 1, Page 157].
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Remark 3.1. As to the notation, when there is no risk of ambiguity, we simply
denote \BbbE \BbbP g(\cdot , \theta ) by \BbbE g(\cdot , \theta ). The expectation of the measurable function y \mapsto \rightarrow g(y, \theta )
with respect to the transition probability \BbbP n, namely,

\BbbE \BbbP n(\xi ,\cdot ) g(\cdot , \theta ) =
\int 
\bfY 

g(y, \theta )\BbbP n(\xi , dy), \theta \in \Theta , \xi \in \Xi ,

will be often abbreviated in [\BbbE ng(\cdot , \theta )](\xi ), where the notation clearly displays the
dependence on n, \theta , \xi , and the integration is performed with respect to y.

(A3) For each \theta \in \Theta 0, there exists a \mu -negligible set N1(\theta ) \subseteq \Xi such that

(3.1) lim sup
n\rightarrow +\infty 

[\BbbE n(g(\cdot , \theta ))](\xi ) \leq \BbbE g(\cdot , \theta ) \forall \xi \in \Xi \setminus N1(\theta ).

(A4) For each positive integer k and for \theta \in \Theta 0, there exists a \mu -negligible set
N2(\theta , k) \subseteq \Xi such that

(3.2) lim inf
n\rightarrow +\infty 

[\BbbE n(g
k(\cdot , \theta ))](\xi ) \geq \BbbE gk(\cdot , \theta ) \forall \xi \in \Xi \setminus N2(\theta , k).

Our main result reads as follows.

Theorem 3.1. Let (\Theta , d) be a separable metric space endowed with its Borel \sigma -
field \scrB (\Theta ), (Y, \rho ) be a metric space endowed with its Borel \sigma -field \scrB (Y), and g be a
nonnegative normal integrand on Y\times \Theta . If assumptions (A1) to (A4) hold, then one
can find a \mu -negligible subset N of \Xi such that, for every \xi \in \Xi \setminus N and \theta \in \Theta , the
sequence of functions

(3.3) \theta \mapsto \rightarrow [\BbbE ng(\cdot , \theta )](\xi ), n \geq 1,

epi-converges on \Theta to

(3.4) \theta \mapsto \rightarrow \BbbE g(\cdot , \theta ).

This is also denoted by

(3.5) \BbbE g(\cdot , \theta ) = epi-limn\rightarrow +\infty [\BbbE ng(\cdot , \theta )](\xi ), \theta \in \Theta .

Remark 3.2.
(i) In assumption (A1), the nonnegativity condition can be relaxed (see, e.g.,

[33] or [16]).
(ii) Assumption (A3) needs only to be checked for those \theta \in \Theta 0 that are members

of the domain of \theta \mapsto \rightarrow \BbbE \BbbP g(\cdot , \theta ), that is, of the set

D0 = \{ \theta \in \Theta 0 : \BbbE \BbbP g(\cdot , \theta ) < +\infty \} ,

which is nonempty by (A1).
(iii) As we shall see, assumption (A3) (resp., (A4)) allows one to prove the epi-lim

sup (resp., epi-lim inf) part of epi-convergence.

Remark 3.3. (i) Often, assumptions (A3) and (A4) can be checked in the form
of an SLLN, namely,

lim
n\rightarrow +\infty 

[\BbbE n (g(\cdot , \theta ))](\xi ) = \BbbE g(\cdot , \theta ) \forall \xi \in \Xi \setminus N1(\theta ),(3.6)

lim
n\rightarrow +\infty 

[\BbbE n(g
k(\cdot , \theta ))](\xi ) = \BbbE gk(\cdot , \theta ) \forall k \geq 1, \forall \xi \in \Xi \setminus N2(\theta , k).(3.7)
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For example, these relationships hold true if the approximating functions can be
expressed as
(3.8)

[\BbbE n g(\cdot , \theta )](\omega ) =
\int 
\bfY 

g(y, \theta )\BbbP n(\omega , dy) =
1

n

n\sum 
i=1

g(Yi(\omega ), \theta ), \omega \in \Omega , \theta \in \Theta , n \geq 1,

where the transition probabilities \BbbP n are given by (1.4). Indeed, if Y1, . . . , Yn are
i.i.d. and g is a nonnegative integrand, then, for all \theta \in \Theta , the random variables
g(Y1, \theta ), . . . , g(Yn, \theta ) are i.i.d. and nonnegative too. A similar argument can be used for
gk, because the measurability properties of g are inherited by gk through the Lipschitz
approximation operation (see [33, Proposition 4.4]). It follows that the identical
distribution and independence properties of g are transmitted to gk. Obviously, if g
is nonnegative, so is gk.

(ii) The case of pairwise i.i.d. sequences can also be treated by appealing to the
Etemadi SLLN (see [24]). The case of ergodic stationary sequences can be dealt with
by using the Birkhoff ergodic theorem (see [11, Corollary 6.23]). The extension to the
case of asymptotically mean stationary sequences is obtained using [35, Theorem 3]
(see [16, section 2.5] for a statistical application).

Thus, Theorem 3.1 can be seen as a device that transforms an SLLN-like con-
vergence result into an SLLN-like epi-convergence result, which in turn can be used
to approximate optimization problems. The SLLN approach and its extensions al-
low us to solve a large variety of problems. However, this is not the only available
method. In particular, when purely deterministic algorithms are used, it is no longer
possible to invoke an SLLN-like result to show the validity of assumptions (A3) and
(A4), and a recourse to other methods is necessary. An example of this kind, dealing
with robust optimization, is treated in subsection 4.6. Others are briefly described
in Appendix B.3. The following remark presents a weaker form of assumption (A4),
namely, assumption (A4w), that can be useful in such situations. More precisely, it
provides another way to prove the epi-lower limit part of epi-convergence, as shown
at the end of the proof of Corollary 4.7.

Remark 3.4. Define the functions \psi n by

\psi n(\theta , \xi ) = [\BbbE n(g(\cdot , \theta ))](\xi ), \theta \in \Theta , \xi \in \Xi , n \geq 1,

and consider assumption (A4w).
(A4w) For each k \geq 1 and \theta \in \Theta 0, there exist an integer m(k) \geq 1 and a \mu -negligible

subset N2(\theta , k) \subseteq \Xi such that
(i) limk\rightarrow +\infty m(k) = +\infty ,
(ii) lim infn\rightarrow +\infty \psi k

n(\theta , \xi ) \geq \BbbE gm(k)(\cdot , \theta ) for all \xi \in \Xi \setminus N2(\theta , k), where the
Lipschitz approximation on the left-hand side is performed with respect
to \theta , namely,

\psi k
n(\theta , \xi ) = inf

\theta \prime \in \Theta 
[\psi n(\theta 

\prime , \xi ) + kd(\theta \prime , \theta )].

Assumption (A4w) is implied by (A4), because \psi k
n(\theta , \xi ) \geq [\BbbE n(g

k(\cdot , \theta ))](\xi ) for all
n, k, \theta , \xi . Simple examples show that the converse implication is not true.

We end this section with an application of Theorem 3.1 to the convergence of
infima and minimizers for the sequence of objective functions given by (3.3).

Theorem 3.2. Assume that (A1) and (A2) hold, and that the sequence given by
(3.3) epi-converges to the function given by (3.4) for \mu -almost all \xi \in \Xi as n goes to
infinity. Then, the following three statements hold true.
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(a) If, for each n \geq 1, \~\varepsilon n is a positive \scrX -measurable function defined on \Xi , then
there exists a sequence of \scrX /\scrB (\Theta )-measurable functions \~\theta n : \Xi \rightarrow \Theta such that,
for \mu -almost all \xi \in \Xi , \~\theta n(\xi ) is an \~\varepsilon n(\xi )-minimizer of \theta \mapsto \rightarrow [\BbbE ng(\cdot , \theta )](\xi ), that
is,

(3.9) \BbbE \BbbP n(\xi ,\cdot ) g(\cdot , \~\theta n(\xi )) \leq inf
\theta \in \Theta 

\BbbE \BbbP n(\xi ,\cdot ) g(\cdot , \theta ) + \~\varepsilon n(\xi ).

(b) Assume that one can find a \mu -negligible subset N \subseteq \Xi such that, for all \xi \in \Xi \setminus 
N , the sequence (\~\theta n(\xi ))n\geq 1 admits a cluster point \~\theta (\xi ) and limn\rightarrow +\infty \~\varepsilon n(\xi ) =

0. Then, for all \xi \in \Xi \setminus N , \~\theta (\xi ) is a minimizer of \theta \mapsto \rightarrow \BbbE g(\cdot , \theta ) and one has

\BbbE g(\cdot , \~\theta (\xi )) = lim sup
n\rightarrow +\infty 

\BbbE g(\cdot , \~\theta n(\xi )).

(c) If the metric space \Theta is compact and if problem (1.1) admits a unique solution
\theta \ast , then for \mu -almost all \xi \in \Xi one has

(3.10) lim
n\rightarrow \infty 

\~\theta n(\xi ) = \theta \ast and \BbbE g(\cdot , \theta \ast ) = lim
n\rightarrow +\infty 

\BbbE g(\cdot , \~\theta n(\xi )).

Remark 3.5.
(i) In (c), the uniqueness of the minimizer is assumed to hold only for \theta \mapsto \rightarrow 

\BbbE g(\cdot , \theta ), but no uniqueness requirement is required for the \~\theta n(\xi )'s (even if
\~\theta n(\xi ) is an exact minimizer of \theta \mapsto \rightarrow \BbbE ng(\cdot , \theta ) for each n \geq 1). On the other
hand, the convergence properties in (3.10) hold for each sequence (\~\theta n(\xi ))n\geq 1

satisfying the required conditions.
(ii) Statement (b) is more general than (c). However, in order to get simpler

statements, we shall mainly refer to statement (c).
(iii) Obviously, if the transition probabilities \BbbP n's do not depend on the parameter

\xi , the conclusions of Theorems 3.1 and 3.2 still hold and do not involve \xi . This
situation is encountered, for example, when one has recourse to deterministic
numerical integration rules (see Appendix B.3).

4. Applications. The following examples present situations where Theorems 3.1
and 3.2 can be applied. Most of them involve various sorts of randomness that
are treated using SLLN-like results, but an example on robust optimization (sub-
section 4.6) shows another available method. In some cases, precise statements are
provided as corollaries of the main results. In others, only a short description is given.
Further applications are briefly presented in Appendix B.

4.1. Monte Carlo approximation of stochastic programs. A first case
arises, as in Example 2.2, when the approximating measure \BbbP n is specified by the
empirical distribution associated with a sample (Yi)i=1,...,n of random variables. In
this case, \BbbP n is a transition probability and one has \Xi = \Omega . As already mentioned,
under suitable conditions on the sequence (Yn)n\geq 1, assumptions (A3) and (A4) hold
in the form of an SLLN.

As mentioned in Remark 3.3(ii), this permits recovery of not only the i.i.d. case,
as in [5], but also the pairwise i.i.d. case [32, 33] and the stationary ergodic case
[70, 44, 71, 16]. Moreover, the case of asymptotically mean stationary ergodic se-
quences (Yi)i=1,...,n (see [45] or [29] for the definition) is dealt with in [17]. This
result can be useful in order to establish strong consistency of estimators and SLLN
for random closed sets, reasoning as in [16]. SLLN-like results that do not require
integrability of the functions, but only quasi-integrability, are provided in [35]. These
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epi-convergence results can be used for approximating optimization problems. This
has been considered, e.g., in [5], but several extensions are possible. Sometimes it
is of interest to use deterministic weights different from 1

n . In this case, one can
have recourse to SLLN for weighted sums (this kind of SLLN has been derived in
[15, 47]). An application of Theorems 3.1 and 3.2 in connection with the consis-
tency of bootstrap estimators is given in subsection 4.4. As shown by Shapiro in [64],
the Monte Carlo sampling method is quite efficient for solving large-scale stochastic
programming problems. In [60], besides the approximation of stochastic program-
ming problems, R\"omisch also examines the question of their stability, namely, how
the infimum and the optimal solution vary when the original probability measure is
perturbed. (See also Appendix B.1 for other applications in the framework of Monte
Carlo techniques.)

4.2. Nonparametric simulated approximation. Let Y : \Omega \rightarrow Y = \BbbR q be a
random variable defined on (\Omega ,\scrA ,\BbbQ ) and let (Yi)i\geq 1 be an i.i.d. sequence of random
variables defined on the same space and having the same distribution as Y . As in
Example 2.2, it is assumed that \Xi = \Omega . Further, the distribution \BbbP = \BbbQ Y of Y is
assumed to have a density f with respect to the q-dimensional Lebesgue measure.
Given a separable metric space \Theta and a \scrB (Y)\otimes \scrB (\Theta )-measurable integrand u : Y \times 
\Theta \rightarrow \BbbR , consider the minimization problem

(4.1) inf
\theta \in \Theta 

\BbbP (B(\theta )) = inf
\theta \in \Theta 

\int 
B(\theta )

f(y) dy,

where B(\theta ) = \{ y \in Y : u(y, \theta ) \leq 0\} . This type of problem arises, for example, in
portfolio management (see, e.g., [58]).

We first need the following result that describes a situation where the function
\theta \rightarrow \BbbP (B(\theta )) is l.s.c. Recall that the l.s.c. property is required by (A1).

Proposition 4.1. Assume the following two conditions hold.
(a) For \BbbP -almost all y \in Y, u(y, \cdot ) is upper semicontinuous (u.s.c.).
(b) For every \theta \in \Theta the set D(\theta ) = \{ y \in Y : u(y, \theta ) = 0\} satisfies \BbbP (D(\theta )) = 0.

Then, the function \theta \rightarrow \BbbP (B(\theta )) is l.s.c.

Remark 4.1. If in addition it is assumed that u(\cdot , \theta ) is u.s.c. for all \theta \in \Theta , then
\BbbP (B(\theta )) > 0 for all \theta such that B\prime (\theta ) \cap supp(\BbbP ) \not = \emptyset , where

B\prime (\theta ) = \{ y \in Y : u(y, \theta ) < 0\} 

and supp(\BbbP ) is the support of \BbbP , that is, the smallest closed subset of Y with full
\BbbP -measure.

In case the density is unknown or exceedingly complex, it is possible to approx-
imate \BbbP by the same empirical measures \BbbP n as in (1.4). Indeed, the SLLN can be
applied to the sequence (Yi)i\geq 1 and implies that, for each B \in \scrB (Y ), one can find a
\BbbQ -negligible subset of \Omega such that

(4.2) lim
n\rightarrow +\infty 

\BbbP n(\omega ,B) = lim
n\rightarrow +\infty 

1

n

n\sum 
i=1

\sansone B(Yi(\omega )) = \BbbP (B) a.s.

Thus, one can think of approximating problem (4.1) by

(4.3) inf
\theta \in \Theta 

[\BbbE n\sansone B(\theta )](\omega ) = inf
\theta \in \Theta 

1

n

n\sum 
i=1

\sansone B(\theta )(Yi(\omega )).
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This is indeed possible by applying Theorem 3.1 to the integrand g defined on Y\times \Theta 
by

(4.4) g(y, \theta ) = \sansone B(\theta )(y).

However, this approximation is generally discontinuous with respect to \theta and can
cause problems for numerical optimization algorithms.9 An alternative is to replace
the empirical distribution function with a smoother estimator. A common choice is
given by a nonparametric estimator of f involving a kernel K(\cdot ), namely, a proba-
bility density function, such as the Gaussian density. Then, the density f(\cdot ) can be
approximated by the mixture

(4.5) fn(\omega , y) =
1

n

n\sum 
i=1

K(y - Yi(\omega )
hn

)

hqn
, \omega \in \Omega , y \in Y, n \geq 1.

The positive parameter hn, whose choice generally depends on the sample size, is
called the bandwidth or smoothing parameter. It permits the control of the degree of
smoothness of the approximating distribution. The bandwidth hn can also depend
on the data (i.e., on \omega ), but we will not consider this case here. The theory of kernel
density estimators is reviewed in [72, 66]. As to the \BbbQ -almost-sure convergence of
fn(\omega , \cdot ) to f , we shall consider the L1-distance on the space of all probability densities
on Y. Also consider a sequence (hn)n\geq 1 of bandwidths satisfying the conditions

(4.6) lim
n\rightarrow +\infty 

hn = 0 and lim
n\rightarrow +\infty 

nhqn = +\infty .

In order to state the epi-convergence result, we consider the integrand g defined
in (4.4).

Corollary 4.2. Assume conditions (a) and (b) of Proposition 4.1 and condi-
tion (4.6) hold. Further, assume that K : Y \rightarrow \BbbR + is measurable and satisfies\int 
\bfY 
K(y) dy = 1. Then, there exists a \BbbQ -negligible subset N of \Omega such that for all

\omega \in \Omega \setminus N the sequence of functions

\theta \mapsto \rightarrow [\BbbE n g(\cdot , \theta )](\omega ) =
\int 
\bfY 

g(y, \theta )fn(\omega , y) dy =
1

n

n\sum 
i=1

\int 
B(\theta )

K(y - Yi(\omega )
hn

)

hqn
dy

epi-converges to

\theta \mapsto \rightarrow [\BbbE g(\cdot , \theta )] =
\int 
\bfY 

g(y, \theta )f(y) dy = P (B(\theta ))

as n goes to infinity.

Remark 4.2. Condition (4.6) is a well-known necessary and sufficient condition
for fn(\omega , \cdot ) to be \BbbQ -a.s. convergent to f(\cdot ) in the L1-metric on Y = \BbbR q (see, e.g., [22,
Theorem 1]).

For example, consider the approximation of (4.1) through the kernel estimator
(4.5) and suppose that K(\cdot ) is given by the density of a q-dimensional standard
Gaussian distribution, and let \Phi q(B;m,\Sigma ) be the probability of the set B under a

9An approximation of this kind is known in econometrics as a crude frequency simulator (see
[46]). Related numerical problems are documented, e.g., in [31, Pages 98--99].
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Gaussian distribution with mean m = Y (\omega ) and variance matrix \Sigma = hn \cdot Iq, where
Iq is the q \times q identity matrix. Then, (4.1) can be approximated through

(4.7) inf
\theta \in \Theta 

1

n

n\sum 
i=1

\Phi q(B(\theta );Yi(\omega ),\Sigma ).

Convergence of this kind of approximation has been studied in [25]. The following
corollary, which deals with the convergence of minimizers, is an immediate conse-
quence of Theorem 3.2. The details are left to the reader.

Corollary 4.3. Assume the same assumptions as in Corollary 4.2 and the fol-
lowing additional conditions.

(i) The metric space \Theta is compact, and the function in (4.1) admits a unique
minimizer \theta \ast .

(ii) For each n \geq 1, let \~\varepsilon n be a positive \scrA -measurable function defined on \Omega and
such that for \BbbQ -almost all \omega \in \Omega the sequence (\~\varepsilon n(\omega ))n\geq 1 converges to 0 as
n goes to +\infty .

Then, the following two properties hold.
(a) For each n \geq 1, there exists a sequence of \scrA /\scrB (\Theta )-measurable functions

\~\theta n : \Omega \rightarrow \Theta such that, for \BbbQ -almost all \omega \in \Omega , \~\theta n(\omega ) is an \~\varepsilon n(\omega )-minimizer
of \theta \mapsto \rightarrow [\BbbE ng(\cdot , \theta )](\omega ).

(b) For each sequence (\~\theta n)n\geq 1 as in (a), one has limn\rightarrow \infty \~\theta n(\omega ) = \theta \ast for \BbbQ -almost
all \omega \in \Omega .

4.3. Programming with estimated parameters. Let (\Omega ,\scrA ,\BbbQ ) be a proba-
bility space, Y be a Borel subset of \BbbR q, and Y : \Omega \rightarrow Y be a random variable defined
on that space. The probability \BbbP = \BbbQ Y often depends on an unknown parameter
\eta \in H, where H is a Borel subset of \BbbR m. In such a case, we use the notation \BbbP \eta ,
where \eta is a superscript. This sort of problem arises when one seeks the solution of
a program in which unknown parameters are replaced with estimators. For example,
one could consider a portfolio choice program where the unknown quantities are the
asset moments that have to be estimated from data.

Let \nu be a \sigma -finite positive measure10 on (Y,\scrB (Y)) and assume that \BbbP \eta admits
a density f with respect to \nu , that is,

\BbbP \eta (B) =

\int 
B

f(y, \eta ) \nu (dy), \eta \in H, B \in \scrB (Y).

In addition, f is assumed to be \scrB (Y) \otimes \scrB (H)-measurable. Consequently, given g
satisfying assumption (A1), one has

(4.8) \BbbE \BbbP \eta g(\cdot , \theta ) =
\int 
\bfY 

g(y, \theta ) f(y, \eta ) \nu (dy), \eta \in H, \theta \in \Theta .

Further, if for each n \geq 1 there exists an estimator Sn of \eta , i.e., an\scrA /\scrB (H)-measurable
map Sn : \Omega \rightarrow H, we consider the transition probabilities defined by

\BbbP n(\omega ,B) =

\int 
B

f(y, Sn(\omega )) \nu (dy), B \in \scrB (Y), \omega \in \Omega , n \geq 1.

10The introduction of a \sigma -additive measure allows the case of infinite discrete probability distri-
butions to be included.
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The corresponding expectations are given by
(4.9)

[\BbbE ng(\cdot , \theta )](\omega ) =
\int 
\bfY 

g(y, \theta ) f(y, Sn(\omega )) \nu (dy), \theta \in \Theta , \omega \in \Omega , n \geq 1.

The following result presents a situation where the minimization of (4.8) can be
reached approximately for \BbbQ -almost all \omega by minimizing (4.9). We denote by \eta 0 the
true (unknown) value of the parameter.

Corollary 4.4. Assume the following conditions hold.
(i) H is a Borel subset of \BbbR m, and \Theta 0 is a dense countable subset of \Theta .
(ii) g satisfies (A1), and for all \theta \in \Theta 0 the function y \mapsto \rightarrow g(y, \theta ) is bounded

\nu -almost everywhere on Y.
(iii) For \BbbQ -almost all \omega \in \Omega , one has

(4.10) lim
n\rightarrow +\infty 

\int 
\bfY 

| f(y, \eta 0) - f(y, Sn(\omega ))| \nu (dy) = 0.

Under the above conditions, for \BbbQ -almost all \omega \in \Omega the expectation in (4.9) epi-
converges on \Theta to the expectation in (4.8). Further, if \Theta is compact and if the problem

min
\theta \in \Theta 

\BbbE \BbbP \eta 0 g(\cdot , \theta ) = min
\theta \in \Theta 

\int 
\bfY 

g(y, \theta ) f(y, \eta 0) \nu (dy)

admits a unique solution \theta \ast , then Theorem 3.2 is applicable as well (as in Corol-
lary 4.3).

Remark 4.3. Condition (iii) of Corollary 4.4 simply requires Sn to be consistent
for \eta 0 in the L1-metric. It will be satisfied if the three conditions below hold.

(a) For \BbbQ -almost all \omega \in \Omega , one has \eta 0 = limn\rightarrow +\infty Sn(\omega ), that is, Sn is strongly
consistent.

(b) For \nu -almost all y \in Y, \eta \mapsto \rightarrow f(y, \eta ) is continuous on H.
(c) There exists a positive integrable function h defined on Y such that

| f(y, \eta )| \leq h(y), y \in Y, \eta \in H.

Indeed, it is a straightforward application of the Lebesgue dominated convergence
theorem. More generally, using H\"older's inequality, a simple extension of Corollary 4.4
can be given when L1-convergence in (4.10) is replaced with Lp-convergence (p > 1)
and g(\cdot , \theta ) \in Lq for all \theta \in \Theta , where 1/p+ 1/q = 1.

Example 4.1. Assume that Y is a closed convex subset of \BbbR q and let Y : \Omega \rightarrow Y
still denote a random variable defined on (\Omega ,\scrA ,\BbbQ ) whose expectation \BbbE Y exists (i.e.,
all its components are finite). Further, let (Yi)i\geq 1 be a sequence of random variables
defined on the same space with the same distribution as Y . Consider a continuous
map \psi : Y \rightarrow H and assume that the unknown parameter is \eta 0 = \psi (\BbbE Y ). Also
consider the random variables Sn defined by

Sn(\omega ) = \psi 

\biggl( 
1

n

n\sum 
i=1

Yi(\omega )

\biggr) 
, \omega \in \Omega , n \geq 1.

If the sequence (Yi)i\geq 1 is assumed to be i.i.d., pairwise i.i.d., or stationary ergodic,
then we can invoke the classical SLLN, the Etemadi SLLN, or the Birkhoff ergodic
theorem, respectively, to show the existence of a \BbbP \eta 0-negligible set N of \Omega such that
\eta 0 = \psi (\BbbE Y ) = limn\rightarrow +\infty Sn(\omega ) for all \omega \in \Omega \setminus N . This kind of reasoning is possible
in any case where an SLLN-like result can be shown to hold.
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4.4. Approximations involving the consistency of bootstrap estimators.
The classical bootstrap algorithm employed in statistics corresponds to the algorithm
described in Example 2.3, where (nWi,n)i=1,...,n is a random vector having the multi-
nomial distribution with all probabilities equal to 1/n (see, e.g., [4, Pages 49--50] and
Appendix B.1 for examples). So, Y still denotes a real-valued random variable de-
fined on the probability space (\Omega ,\scrA ,\BbbQ ), (Yi)i=1,...,n an i.i.d. sample defined on the
same space, and (nWi,n)i=1,...,n a random vector defined on the probability space
(\Lambda ,\scrL ,\BbbL ) with generic element \lambda . It is assumed that the random vectors (Yi)i=1,...,n

and (nWi,n)i=1,...,n are independent, so that \Xi is given as the product of two proba-
bility spaces, namely,

(\Xi ,\scrX , \mu ) = (\Lambda \times \Omega ,\scrL \otimes \scrA ,\BbbL \otimes \BbbQ )

and \xi = (\lambda , \omega ). The approximating transition probabilities are given by (2.2). It is
not hard to check that, given a normal integrand g : Y\times \Theta \rightarrow \BbbR +, assumptions (A3)
and (A4) can be verified through the bootstrap SLLN as in [4] (e.g., Theorem 2.1)
or [3]. Therefore, Theorem 3.1 allows us to prove epi-convergence of the sequence of
approximating objective functions

(4.11) \theta \mapsto \rightarrow 
\int 
\bfY 

g(y, \theta )\BbbP n((\lambda , \omega ), dy) =

n\sum 
i=1

Wi,n(\lambda ) \cdot g(Yi(\omega ), \theta )

to

(4.12) \theta \mapsto \rightarrow \BbbE \BbbL \otimes \BbbQ g(Y, \theta ) =

\int 
\Lambda \times \Omega 

g(Y (\omega ), \theta ) (\BbbL \otimes \BbbQ )(d(\lambda , \omega )) = \BbbE \BbbQ g(Y, \theta )

for (\BbbL \otimes \BbbQ )-almost any (\lambda , \omega ) \in \Lambda \times \Omega as n goes to +\infty . This means that, for
almost all random samples (Yi)i=1,...,n and for almost all resampling from (Yi)i=1,...,n,
the sequence of approximate (bootstrapped) objective functions epi-converges to the
original one.

The following result is an immediate consequence of this fact and of Theorem 3.2.
It presents a situation where any sequence of (exact or approximate) minimizers asso-
ciated with the functions given by (4.11) converges to the unique minimizer of (4.12).

Corollary 4.5. Assume that \Theta is compact and that the function given by (4.12)
admits a unique minimizer \theta \ast . Let \~\varepsilon n : \Xi \rightarrow (0,+\infty ) and \~\theta n : \Xi \rightarrow \Theta be sequences11

like those in Theorem 3.2, where the functions \theta \mapsto \rightarrow [\BbbE ng(\cdot , \theta )](\xi ) are given by (4.11).
Then for \mu -almost all \xi \in \Xi , the sequence (\~\theta n(\xi ))n\geq 1 converges to \theta \ast in \Theta as n goes
to +\infty .

4.5. Epi-convergence of \bfitU -statistics. Let Y : \Omega \rightarrow Y be a random variable
defined on (\Omega ,\scrA ,\BbbQ ) with distribution \BbbP = \BbbQ Y . Here, we assume that Y = \BbbR .
Consider an i.i.d. sequence (Yi)i\geq 1 defined on the same space and a separable metric
space (\Theta , d). For a given normal integrand h : Y2 \times \Theta \rightarrow \BbbR , we define

Vn(\omega , \theta ) =
1

n2

n\sum 
i=1

n\sum 
j=1

h(Yi(\omega ), Yj(\omega ), \theta )

=

\int 
\bfY 2

h(y1, y2, \theta )\BbbP n(\omega , dy1 \otimes dy2), \omega \in \Omega , \theta \in \Theta ,(4.13)

11The existence of \~\theta n is guaranteed by Theorem 3.2(a).
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where

\BbbP n(\omega ,B) =
1

n2

n\sum 
i=1

n\sum 
j=1

\delta (Yi(\omega ),Yj(\omega ))(B), \omega \in \Omega , B \in \scrB (Y)\otimes \scrB (Y) = \scrB (Y2).

Vn is a V -statistic or von Mises statistic (see, e.g., [62, section 5.1.2 and Chapter 6])
depending on a parameter \theta \in \Theta . These statistics arise, for example, in the theory
of U - and V -processes (see, e.g., [20, Page 67]). We would like to find conditions
ensuring that, for \BbbQ -almost all \omega \in \Omega , Vn(\omega , \cdot ) in (4.13) converges epigraphically to
V (\cdot ) defined by

V (\theta ) = \BbbE \BbbQ h(Y1, Y2, \theta ), \theta \in \Theta ,

where Y1 and Y2 are two independent copies of Y . Equivalently, we have

(4.14) V (\theta ) =

\int 
\Omega 

h(Y1(\omega ), Y2(\omega ), \theta )\BbbQ (d\omega ) =

\int 
\bfY 2

h(y1, y2, \theta )\BbbP (dy1)\BbbP (dy2).

Combining our Theorem 3.1 and [1, Theorem U(i), (ii)], it is possible to give a simple
epi-convergence result. As in [1], we assume that h is bounded by a \BbbP -integrable product
(BIP).

Corollary 4.6. Let h be a nonnegative normal integrand on Y2\times \Theta and assume
the following condition.
(BIP) There exists a measurable function h0 : Y \times \Theta \rightarrow \BbbR such that, for all \theta \in \Theta ,

(a) h0(\cdot , \theta ) is \BbbP -integrable,
(b) h(y1, y2, \theta ) \leq h0(y1, \theta )h0(y2, \theta ), y1, y2 \in Y.

Also assume one of the following two conditions:
(j) \BbbP is discrete,
(jj) one can find a dense countable subset \Theta 0 such that, for \BbbP \otimes \BbbP -almost all

(y01 , y
0
2) \in Y2, the family of functions \scrF = \{ (y1, y2) \mapsto \rightarrow h(y1, y2, \theta ) : \theta \in \Theta 0\} 

is equi-continuous at (y01 , y
0
2), i.e., for each \varepsilon > 0 there exists \eta > 0 such that

\rho (y1, y
0
1) < \eta and \rho (y2, y

0
2) < \eta together imply | h(y1, y2, \theta )  - h(y01 , y

0
2 , \theta )| < \varepsilon 

for all \theta \in \Theta 0.
Under the above conditions, one can find a \BbbQ -negligible set N \subseteq \Omega satisfying

V (\cdot ) = epi-limn\rightarrow +\infty Vn(\omega , \cdot )

on \Theta for all \omega \in \Omega \setminus N .

Remark 4.4. (i) As pointed out by Aaronson et al. in [1, Page 2853], there is
a difference in stating that N is \BbbQ -negligible12 (as can be established using their
Theorem U) or that N is \BbbQ \otimes \BbbQ -negligible (as obtained from the Birkhoff ergodic
theorem), since \BbbQ can even be singular with respect to \BbbQ \otimes \BbbQ , the limit integration
measure. Example 4.1 in [1] presents a case that clarifies this difference. Only a
probabilistic result, such as our Theorem 3.1, can allow the derivation of\BbbQ -almost-sure
epi-convergence and help identify the measure with respect to which N is negligible.

(ii) In the above result, we have assumed that (Yn)n\geq 1 is an i.i.d. sequence, but
an easy extension is possible. Indeed, since Theorem U of [1] holds for an ergodic,
stationary process, our conclusion remains valid in this case, provided the function V
appearing in (4.14) is suitably modified.

(iii) Condition (jj) of Corollary 4.6 is quite natural. Indeed, if h does not de-
pend on \theta , this condition reduces to Theorem U(ii) of [1], i.e., (y1, y2) \mapsto \rightarrow h(y1, y2) is
continuous at (y01 , y

0
2) for \BbbP \otimes \BbbP -almost all (y01 , y

0
2) \in Y2.

12Equivalently, \BbbQ can be seen as the diagonal measure on \Omega \times \Omega .
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As to the convergence of minimizers, the precise statement and proof follow the
same lines as the previous examples and are left to the reader.

4.6. An approximation result for robust optimization problems. As in
[55], our main theorem can be applied when the sequence of functions whose epi-
convergence is under scrutiny has a domain that varies with n. Interesting examples
of this kind are provided by robust optimization, as considered in [7, 63, 36], or semi-
infinite programming, as in [57, 37]. In order to provide a precise statement of the
problem, it is necessary to define the \BbbP -essential intersection for a random set.

Consider a map F : Y \rightarrow 2\Theta , whose values are subsets of \Theta . The graph of F is
denoted by Gr(F ) and defined by

Gr(F ) = \{ (y, \theta ) \in Y \times \Theta : \theta \in F (y)\} .

F is called a random set if Gr(F ) \in \scrB (Y)\otimes \scrB (\Theta ). For general references on random
sets see, e.g., [48] or [34]. The \BbbP -essential intersection13 of F is the subset denoted
by \wedge \BbbP (F ) and defined by

\wedge \BbbP (F ) =
\bigcup 

N\in \scrN 

\bigcap 
y\in supp(\BbbP )\setminus N

F (y),

where \scrN denotes the set of all negligible sets of (Y,\scrB (Y),\BbbP ), and supp(\BbbP ) is the
support of \BbbP . Thus, \theta \in \wedge \BbbP (F ) if and only if \theta \in F (y) for \BbbP -almost all y \in Y. From
this, it follows that \wedge \BbbP (F ) is closed if and only if F (y) is closed for \BbbP -almost all y \in Y.
For references on essential intersection see, e.g., [38, Page IV-34] or [36, section 3].

Essential intersection allows the problem of robust optimization to be stated pre-
cisely, as follows:

(4.15) min
\theta \in \Theta 

f0(\theta ) subject to f(y, \theta ) \leq 0, \BbbP -a.s.,

where f0 : \Theta \rightarrow \BbbR + and f : Y \times \Theta \rightarrow \BbbR are assumed to be l.s.c. The above
constraint can be expressed in terms of essential intersection, which gives an equivalent
formulation of (4.15):

(4.16) min
\theta \in \Theta 

f0(\theta ) subject to \theta \in \wedge \BbbP (H),

where the (closed valued) random set H is defined by

(4.17) H(y) = \{ \theta \in \Theta : f(y, \theta ) \leq 0\} .

Remark 4.5. This formulation is different from others that are often encountered
in the literature. Alternative formulations, such as

(4.18) min
\theta \in \Theta 

f0(\theta ) subject to \theta \in \{ \theta \prime \in \Theta : f(y, \theta \prime ) \leq 0 \forall y \in supp(\BbbP )\} 

are not precise enough, because they are correct only when the set \scrN of negligible
sets of (Y,\scrB (Y),\BbbP ) reduces to the singleton \{ \emptyset \} . In fact, apart from this special case,
the constraint set in (4.18) may be empty, whereas \wedge \BbbP (H) is not.

13This object is also called continuous intersection in reference to the case where \BbbP is atomless.
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The indicator function of a subset C of \Theta is denoted by \chi (\cdot , C) and defined by

\chi (\theta , C) = 0 if \theta \in C, \chi (\theta , C) = +\infty if \theta /\in C, \theta \in \Theta .

This function allows us to give another characterization for essential intersection.
Indeed, it readily follows from the definitions that

\chi (\theta ,\wedge \BbbP (H)) = \BbbE \BbbP \chi (\theta ,H(\cdot )) =
\int 
\bfY 

\chi (\theta ,H(y))\BbbP (dy), \theta \in \Theta .

Consequently, problem (4.16) can be rewritten as

(4.19) min
\theta \in \Theta 

(f0(\theta ) + c(\theta )),

where c(\theta ) is defined by

(4.20) c(\theta ) = \chi (\theta ,\wedge \BbbP (H)).

Thus, minimizing f0(\theta ) under the constraint \theta \in \wedge \BbbP (H) amounts to minimizing f0(\theta )+
c(\theta ) without any constraint.

Let (\Xi ,\scrX , \mu ) be a probability space. Corollary 4.7 presents a simple approxima-
tion procedure for problem (4.19), where \BbbP is approximated narrowly by a sequence
(\BbbP n)n\geq 1 of transition probabilities defined on \Xi \times \scrB (Y). For each n \geq 1 and \xi \in \Xi ,
we set

(4.21) cn(\theta , \xi ) = \chi (\theta ,\wedge \BbbP n(\xi ,\cdot )(H)) = \BbbE \BbbP n(\xi ,\cdot )\chi (\theta ,H(\cdot ))

and we consider the minimization problem

(4.22) min
\theta \in \Theta 

(f0(\theta ) + cn(\theta , \xi ))

or, equivalently,
min
\theta \in \Theta 

f0(\theta ) subject to \theta \in \wedge \BbbP n(\xi ,\cdot )(H).

Corollary 4.7. Assume that Y and \Theta are closed subsets of \BbbR q and \BbbR p respec-
tively, and that the following five conditions hold.

(C0) The set of constraints of problem (4.15) (or (4.16)) is nonempty; namely,
there exists at least one \theta \in \Theta such that f(y, \theta ) \leq 0 for \BbbP -almost all y \in Y.

(C1) f0 : \Theta \rightarrow \BbbR + and f : Y \times \Theta \rightarrow \BbbR are l.s.c.
(C2) For \mu -almost all \xi \in \Xi , the sequence (\BbbP n(\xi , \cdot ))n\geq 1 converges narrowly to \BbbP .
(C3) For each n \geq 1 and for \mu -almost all \xi \in \Xi , \BbbP n(\xi , \cdot ) is absolutely continuous

with respect to \BbbP n+1(\xi , \cdot ) (which is denoted by \BbbP n(\xi , \cdot ) \ll \BbbP n+1(\xi , \cdot )).
(C4) For each \theta \in \wedge \BbbP (H) and for \mu -almost all \xi \in \Xi , there exists an integer

m = m(\theta , \xi ) such that \theta \in \wedge \BbbP n(H) for all n \geq m.
Under the above conditions, for \mu -almost all \xi \in \Xi the sequence (f0(\cdot ) + cn(\cdot , \xi ))n\geq 1

epi-converges to f0(\cdot ) + c(\cdot ) on \Theta as n goes to infinity.

Remark 4.6.
(i) Condition (C3) will be satisfied if supp\BbbP n \subseteq supp\BbbP n+1 for all n \geq 1. This

holds, for example, if for each n \geq 1 and \mu -almost all \xi \in \Xi the approximating
probability \BbbP n(\xi , \cdot ) is supported by a finite subset of Y, say In = In(\xi ) =
\{ yn1 (\xi ), . . . , ynkn

(\xi )\} , with In \subset In+1 and kn < kn+1. We thus have

\BbbP n(\xi , dy) =

kn\sum 
i=1

wi,n(\xi ) \delta yn
i (\xi )(dy),

where the wi,n(\xi )'s (i = 1, . . . , kn) are positive weights summing to 1.
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(ii) Problem (4.15) (or (4.16)) may have an infinite number of constraints. How-
ever, in many situations, such as the one just mentioned, \BbbP n(\xi , \cdot ) has a finite
support, so that the number of constraints of problem (4.22) is finite, which
makes the approximation process more tractable.

(iii) Condition (C4) means that if \theta satisfies the constraints of problem (4.16),
then it also satisfies the constraints of all the approximating problems for n
large enough. This is, of course, a minimal requirement.

As to the convergence of minimizers, we can state the following corollary.

Corollary 4.8. Assume the same hypotheses as in Corollary 4.7, that \Theta is com-
pact, and that problem (4.19) admits a unique solution \theta \ast . For each n \geq 1, let \~\varepsilon n be
a positive \scrX -measurable function defined on \Xi and such that for \mu -almost all \xi \in \Xi 
the sequence (\~\varepsilon n(\xi ))n\geq 1 converges to 0 as n goes to +\infty .

Then, the following two properties hold.
(a) For each n \geq 1, there exists a sequence of \scrX /\scrB (\Theta )-measurable functions

\~\theta n : \Xi \rightarrow \Theta such that, for \mu -almost all \xi \in \Xi , \~\theta n(\xi ) is an \~\varepsilon n(\xi )-minimizer of
\theta \mapsto \rightarrow f0(\theta ) + cn(\theta , \xi ).

(b) For each sequence (\~\theta n)n\geq 1 as in (a), one has limn\rightarrow \infty \~\theta n(\xi ) = \theta \ast for \mu -almost
all \xi \in \Xi .

We refer the reader to [36], where similar results are proved for asymptotic mean
stationary and pairwise i.i.d. sequences using a different approach.

5. Proofs.

Proof of Theorem 3.1. For any n \geq 1, define on \Xi \times \Theta the function

hn(\xi , \theta ) = [\BbbE ng(\cdot , \theta )](\xi ).

To show (3.5), it is enough to prove the following two inequalities:

epi-lim infn\rightarrow +\infty hn(\xi , \theta ) \geq \BbbE g(\cdot , \theta ) \forall \xi \in \Xi \setminus N1, \forall \theta \in \Theta ,(5.1)

epi-lim supn\rightarrow +\infty hn(\xi , \theta ) \leq \BbbE g(\cdot , \theta ) \forall \xi \in \Xi \setminus N2, \forall \theta \in \Theta ,(5.2)

where N1 and N2 are some negligible subsets of \Xi that will be specified below. As
stated in Theorem 3.1, \Theta 0 denotes a dense countable subset of \Theta . For any \xi \in \Xi 
and for any fixed integer k \geq 1, the Lipschitz approximation of order k of hn(\xi , \cdot ) is
defined by

hkn(\xi , \theta ) = inf
\theta \prime \in X

\{ hn(\xi , \theta \prime ) + kd(\theta , \theta \prime )\} \forall \theta \in \Theta .

Since the expectation of the infimum is not greater than the infimum of the expecta-
tion, we easily obtain

(5.3) hkn(\xi , \theta ) \geq [\BbbE ng
k(\cdot , \theta )](\xi ).

An appeal to Proposition 4.4 in [33] shows that gk and hkn are \widehat \scrX \otimes \scrB (\Theta )-measurable.14

Consequently, for any \theta \in \Theta 0 and k \geq 1, we can apply assumption (A4) to the
sequence ([\BbbE ng

k(\cdot , \theta )](\xi ))n\geq 1. This proves the existence of a negligible subset N1(\theta , k)
such that, for any \xi \in \Xi \setminus N1(\theta , k),

(5.4) lim inf
n

hkn(\xi , \theta ) \geq [\BbbE gk(\cdot , \theta )](\xi ).

14Here (\Xi , \widehat \scrX ) denotes the universal completion of (\Xi ,\scrX ) (see, e.g., [21, Page 31]).
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Set N1 =
\bigcup 

\theta \in \Theta 0

\bigcup 
k\geq 1N1(\theta , k). Inequality (5.4) is valid for \xi \in \Xi \setminus N1, k \geq 1, and

\theta \in \Theta 0. Moreover, it remains valid for any \theta \in \Theta because each side of (5.4) defines
a Lipschitz function of \theta , with Lipschitz constant k. Then, taking the supremum
with respect to k on both sides of (5.4) and using (A.6) together with the monotone
convergence theorem, we obtain (5.1).

To prove (5.2), it is useful to define the function \varphi by \varphi (\theta ) = \BbbE g(\cdot , \theta ) and,
for any k \geq 1, the function \varphi k by \varphi k(\theta ) = inf\{ \varphi (\theta \prime ) + kd(\theta , \theta \prime ) : \theta \prime \in \Theta \} , where
\theta \in \Theta . Observe first that assumption (A1) implies the finiteness of \varphi k on \Theta . Further,
for any \theta \in \Theta 0, p \geq 1, and k \geq 1, one can find \theta \prime = \theta \prime (\theta , p, k) \in \Theta such that
\varphi (\theta \prime ) + kd(\theta , \theta \prime ) \leq \varphi k(\theta ) + 1

p . Hence, for each \theta \in \Theta 0 and k \geq 1, the following
equality holds true:

(5.5) \varphi k(\theta ) = inf\{ \varphi (\theta \prime (\theta , p, k)) + kd(\theta , \theta \prime (\theta , p, k)) : p \geq 1\} .

Further, applying assumption (A3) to the sequence ([\BbbE ng(\cdot , \theta \prime (\theta , p, k))](\xi ))n\geq 1, we
can see that, for every \theta \in \Theta 0, k \geq 1, and p \geq 1, there exists a \mu -negligible subset
N2(\theta , p, k) such that, for every \xi \in \Xi \setminus N2(\theta , p, k),

(5.6) lim sup
n

[\BbbE ng(\cdot , \theta \prime (\theta , p, k))](\xi ) \leq \varphi (\theta \prime (\theta , p, k)).

Set N2 =
\bigcup 

\theta \in \Theta 0

\bigcup 
p\geq 1

\bigcup 
k\geq 1N2(\theta , p, k) and consider \xi \in \Xi \setminus N2. For any \theta \in \Theta 0 and

k \geq 1, we have

lim sup
n

hkn(\xi , \theta ) \leq inf
\theta \prime \in \Theta 

lim sup
n\rightarrow +\infty 

[hn(\xi , \theta 
\prime ) + kd(\theta , \theta \prime )].

Restricting the infimum to the subset \{ \theta \prime (\theta , p, k) : p \geq 1\} and using (5.6) and (5.5),
we obtain

lim sup
n

hkn(\xi , \theta ) \leq inf
p\geq 1

[\varphi (\theta \prime (\theta , p, k), \xi ) + kd(\theta , \theta \prime (\theta , p, k))] = \varphi k(\theta ).

So, we have proved, for each k \geq 1 and \xi \in \Xi \setminus N2,

(5.7) lim sup
n

hkn(\xi , \theta ) \leq \varphi k(\theta ) \forall \theta \in \Theta 0.

Then, again invoking the Lipschitz property, we conclude that (5.7) remains valid for
all \theta \in \Theta . Finally, taking the supremum on k in both sides of (5.7) and using (A.7),
we get (5.2).

Proof of Theorem 3.2. By Theorem 3.1, for \mu -almost all \xi \in \Xi , the sequence
given by (3.3) epi-converges to the function given by (3.4) as n goes to infinity. As to
statement (a), using measurable selection arguments, it is not difficult to show that
for each n \geq 1 there exists a \scrX /\scrB (\Theta )-measurable function \~\theta n : \Xi \rightarrow \Theta such that

(5.8) [\BbbE ng(\cdot , \~\theta n(\xi ))](\xi ) \leq inf
\theta \in \Theta 

[\BbbE ng(\cdot , \theta )] + \~\varepsilon n(\xi )

for \mu -almost all \xi \in \Xi (see, e.g., [12, 32, 33]). Thus, for each n \geq 1 and \mu -almost all
\xi \in \Xi , \~\theta n(\xi ) is an \~\varepsilon n(\xi )-minimizer of \theta \mapsto \rightarrow [\BbbE ng(\cdot , \theta )](\xi ) on \Theta . To prove statement
(b), fix any \xi \in \Xi for which statement (a) holds. Then, the conclusion easily follows
from Proposition A.3(a) applied to the sequence \theta n = \~\theta n(\xi ) and to \theta \infty = \theta \ast . For
statement (c), use Proposition A.3(b) and Remark A.1(i)
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Proof of Proposition 4.1. Consider \theta \in \Theta and a sequence (\theta n) converging to \theta .
Let y \in B(\theta ), or, equivalently, let y be such that u(y, \theta ) \leq 0. In view of condition
(b), we have

\BbbP (B(\theta )) = \BbbP (B(\theta ) \setminus D(\theta )) = \BbbP (\{ y \in Y : u(y, \theta ) < 0\} ).

It is thus possible to assume that u(y, \theta ) < 0. By condition (a), we have

lim sup
n\rightarrow +\infty 

u(y, \theta n) \leq u(y, \theta ),

which implies u(y, \theta n) \leq u(y, \theta ) < 0 for all n \geq m for m large enough. Thus, the
following inclusion is valid up to a \BbbP -negligible subset of Y:

B(\theta ) \subseteq 
\bigcup 
m\geq 1

\bigcap 
n\geq m

B(\theta n).

It follows that
P (B(\theta )) \leq lim inf

n\rightarrow +\infty 
P (B(\theta n)),

which proves the desired result.

Proof of Corollary 4.2. For each integer k \geq 1, consider the Lipschitz approxi-
mation of g of order k given by

gk(y, \theta ) = inf
\theta \prime \in \Theta 

\{ \sansone B(\theta \prime )(y) + kd(\theta , \theta \prime )\} , (y, \theta ) \in Y \times \Theta .

For each n \geq 1, the empirical measure \BbbP n is given by \BbbP n(\omega , dy) = fn(\omega , y) dy, where
fn is defined by (4.5) and dy corresponds to the q-dimensional Lebesgue measure.
Thus, assumption (A2) is satisfied. The validity of assumption (A1) obviously follows
from Proposition 4.1, that is, g is a finite normal integrand. As to assumption (A3),
observe that by Theorem 1 of [22], one has, for \BbbQ -almost all \omega \in \Omega ,

(5.9) lim
n\rightarrow +\infty 

\int 
\bfR q

| fn(\omega , y) - f(y)| dy = 0.

On the other hand, one has, for all \omega \in \Omega ,

| [\BbbE ng(\cdot , \theta )](\omega ) - \BbbE g(\cdot , \theta )| =
\bigm| \bigm| \bigm| \bigm| \int 

\bfY 

g(y, \theta )fn(\omega , y) dy  - 
\int 
\bfY 

g(y, \theta )f(y) dy

\bigm| \bigm| \bigm| \bigm| 
\leq 

\int 
\bfY 

g(y, \theta )| fn(\omega , y) - f(y)| dy.

Since the only possible values of g are 0 and 1, the above inequality and (5.9) show
that assumption (A3) holds. Similarly, for all k \geq 1 the values of gk are contained
in [0, 1], from which it follows that assumption (A4) is satisfied. It only remains to
apply Theorem 3.1.

Proof of Corollary 4.4. As in the proof of Corollary 4.2 we get, for every \theta \in \Theta ,\bigm| \bigm| [\BbbE ng(\cdot , \theta )](\omega ) - \BbbE \BbbP \eta 0 g(\cdot , \theta )
\bigm| \bigm| \leq \int 

\bfY 

g(y, \theta )
\bigm| \bigm| f(y, Sn(\omega )) - f(y, \eta )

\bigm| \bigm| \nu (dy).
In view of the boundedness condition on g and condition (iii), this shows that as-
sumption (A3) holds. Replacing g with gk proves that assumption (A4) holds too,
because the boundedness condition is inherited by gk from g.



GENERIC CONSISTENCY 309

Proof of Corollary 4.6. Here, Y is replaced with Y2, and the function g of The-
orem 3.1 is replaced with h, the normal integrand introduced in subsection 4.5. It is
not difficult to check assumptions (A1) and (A2). Let us explain why assumptions
(A3) and (A4) are satisfied. Theorem U of [1] can be applied to both h and hk, where
hk is defined by

hk(y1, y2, \theta ) = inf
\theta \prime \in \Theta 

[h(y1, y2, \theta ) + kd(\theta , \theta \prime )], y1, y2 \in Y, \theta \in \Theta , k \geq 1.

Observe that, like h, hk is bounded by a \BbbP -integrable product, because 0 \leq hk \leq h.
Further, if condition (j) is satisfied, it is enough to invoke Theorem U(i) of [1]. If
condition (jj) is satisfied, then it is readily checked that the function hk(\cdot , \cdot , \theta ) is
continuous at \BbbP \otimes \BbbP -almost every point of Y2 for all k \geq 1 and \theta \in \Theta . Thus, it only
remains to appeal to Theorem U(ii) of [1].

Proof of Corollary 4.7. Let N be a negligible subset of \Xi such that conditions
(C2)--(C4) hold for all \xi \in \Xi \setminus N . Without loss of generality, we can fix \xi \in \Xi \setminus N and
set \BbbP n = \BbbP n(\xi , \cdot ), that is, it suffices to consider the simpler case where the \BbbP n's do
not depend on \xi .

First observe that problem (4.19) (resp., (4.22)) admits the following equivalent
formulation:

(5.10) min
\theta \in \Theta 

\BbbE \BbbP g(\cdot , \theta ),
\Bigl( 
resp., min

\theta \in \Theta 
\BbbE \BbbP n g(\cdot , \theta )

\Bigr) 
,

where g is given by
g(y, \theta ) = f0(\theta ) + \chi (\theta ,H(y))

for all (y, \theta ) \in Y \times \Theta and H is given by (4.17). In view of (4.20) and (4.21), this
yields

\BbbE g(\cdot , \theta ) = f0(\theta ) + c(\theta ) and \BbbE ng(\cdot , \theta ) = f0(\theta ) + cn(\theta ), \theta \in \Theta , n \geq 1.

Let us show that it is possible to apply Theorem 3.1; namely, that assumptions (A1)--
(A4) are satisfied. By (C0) and the closedness of the values of the random set H,
(A1) is satisfied with g defined as above. Assumption (A2) is clearly satisfied too. As
for (A3), it is enough to show that, for all \theta \in \Theta ,

(5.11) lim sup
n\rightarrow +\infty 

cn(\theta ) \leq c(\theta ),

where c(\theta ) and cn(\theta ) are defined by (4.20) and (4.21), respectively. Obviously, it
suffices to prove (5.11) when c(\theta ) is finite (whence equal to 0), which amounts to
\theta \in \wedge \BbbP (H). By (C4) it is possible to find m \geq 1 such that \theta \in \wedge \BbbP n

(H) for all n \geq m.
Since the cn's are indicator functions, we deduce cn(\theta ) = 0 for all n \geq m, from which
(5.11) follows. As to (A4), it is more convenient to prove (A4w) (see Remark 3.4).
Let us first prove that for all \theta \in \Theta 

(5.12) lim inf
n\rightarrow +\infty 

cn(\theta ) \geq c(\theta ).

The l.s.c. property of y \mapsto \rightarrow f(y, \theta ) implies that y \mapsto \rightarrow \chi (\theta ,H(y)) is l.s.c. By (C2) we
can use the definition of narrow convergence, namely,\int 

\bfY 

\varphi (y)\BbbP (dy) = lim
n\rightarrow +\infty 

\int 
\bfY 

\varphi (y)\BbbP n(dy)
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for every bounded continuous function \varphi : Y \rightarrow \BbbR , and the fact that any extended
real-valued l.s.c. function can be expressed as the supremum of an increasing sequence
of bounded continuous functions. Applying this to y \mapsto \rightarrow \chi (\theta ,H(y)) gives (5.12). From
(5.11) and (5.12), we deduce

(5.13) c(\theta ) = lim
n\rightarrow +\infty 

cn(\theta ).

Also observe that condition (C3) implies \wedge \BbbP n+1
(H) \subseteq \wedge \BbbP n

(H) for all n \geq 1 and that
(5.13) implies

\wedge \BbbP (H) =
\bigcap 
n\geq 1

\wedge \BbbP n(H).

Thus, (\wedge \BbbP n(H))n\geq 1 is a nonincreasing sequence of closed subsets of \Theta , whose inter-
section is \wedge \BbbP (H). Since the closed balls of \Theta are compact, it is readily seen that, for
all \theta \in \Theta ,

(5.14) d(\theta ,\wedge \BbbP (H)) = lim
n\rightarrow +\infty 

d(\theta ,\wedge \BbbP n
(H)) = sup

n\geq 1
d(\theta ,\wedge \BbbP n

(H)),

where \theta \mapsto \rightarrow d(\theta , C) = inf\theta \prime \in \Theta d(\theta , \theta 
\prime ) denotes the distance function of the subset C of

\Theta . Now, consider for all integers n, k \geq 1 the Lipschitz approximation of order k of
cn, namely,

ckn(\theta ) = inf
\theta \prime \in \Theta 

\bigl[ 
\chi (\theta \prime ,\wedge \BbbP n(H)) + kd(\theta \prime , \theta )

\bigr] 
= kd(\theta ,\wedge \BbbP n(H)).

Similarly, we have

ck(\theta ) = kd(\theta ,\wedge \BbbP (H)).

In view of (5.14) it follows that, for all k \geq 1 and \theta \in \Theta ,

(5.15) ck(\theta ) = lim
n\rightarrow +\infty 

ckn(\theta ).

Further, since the infimum of the sum is not greater than the sum of the infima, one
has, for all integers n, k \geq 1, and \theta \in \Theta ,

(f0 + cn)
k(\theta ) \geq f

k/2
0 (\theta ) + ck/2n (\theta ).

Taking the lim inf on each side yields

(5.16) lim inf
n\rightarrow +\infty 

(f0 + cn)
k(\theta ) \geq f

k/2
0 (\theta ) + lim inf

n\rightarrow +\infty 
ck/2n (\theta ) = f

k/2
0 (\theta ) + ck/2(\theta ),

where the last equality follows from (5.15). This is not exactly (A4w), but a variant
of it (the objective functions have been split into two terms). However, taking the
supremum over k on each side of (5.16) yields

epi-lim inf (f0(\theta ) + cn(\theta )) \geq sup
k\geq 1

(f
k/2
0 (\theta ) + ck/2(\theta )) = f0(\theta ) + c(\theta ),

where the supremum on the right-hand side is also a limit (see Proposition A.2).

Appendix A. Necessary facts about epigraphical convergence. For a
more complete treatment of epigraphical convergence, we refer the reader to [6] or [19].
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Let (\Theta , d) be a metric space and let \varphi : \Theta \rightarrow \BbbR = [ - \infty ,+\infty ] be a function from \Theta 
into the extended reals. Its epigraph (or upper graph) is defined by

(A.1) Epi(\varphi ) = \{ (\theta , \lambda ) \in \Theta \times \BbbR : \varphi (\theta ) \leq \lambda \} .

Given a sequence15 (\varphi n)n\geq 1 of functions from \Theta into \BbbR , its epigraphical lower limit and
epigraphical upper limit are respectively denoted by epi-lim inf \varphi n and epi-lim sup\varphi n,
and are defined for all \theta \in \Theta by

epi-lim inf \varphi n(\theta ) = sup
r>0

lim inf
n\rightarrow +\infty 

inf
\theta \prime \in \sansB (\theta ,r)

\varphi n(\theta 
\prime ),(A.2)

epi-lim sup\varphi n(\theta ) = sup
r>0

lim sup
n\rightarrow +\infty 

inf
\theta \prime \in \sansB (\theta ,r)

\varphi n(\theta 
\prime ),(A.3)

where \sansB (\theta , r) denotes the open ball of radius r centered at \theta . These functions are often
referred to as the lower epi-limit and the upper epi-limit of (\varphi n)n\geq 1. Both functions
are l.s.c., and one has, for all \theta \in \Theta ,

(A.4) epi-lim inf \varphi n(\theta ) \leq epi-lim sup\varphi n(\theta ).

When the equality holds in (A.4) at some point \theta \in \Theta , the sequence (\varphi n) is said to
be epigraphically convergent at \theta . Obviously, this holds if and only if the following
two inequalities are satisfied:

(A.5) epi-lim sup\varphi n(\theta ) \leq \varphi (\theta ) \leq epi-lim inf \varphi n(\theta ).

If this holds for all \theta \in \Theta , the common value defines a function \varphi called the epigraphical
limit (epi-limit) of the sequence (\varphi n). This is denoted by \varphi = epi-lim\varphi n and the
sequence (\varphi n) is said to epi-converge to \varphi on \Theta .

Epi-convergence can be conveniently characterized by means of Lipschitz approx-
imations. This is a decisive argument of the proofs in section 5. Given an l.s.c.
function \varphi : \Theta \rightarrow \BbbR and an integer k \geq 1, the Lipschitz approximation of order k of
\varphi is defined by

\varphi k(\theta ) = inf
\theta \prime \in \Theta 

\{ \varphi (\theta \prime ) + kd(\theta , \theta \prime )\} , k \geq 1.

Its main properties are listed in the following proposition (see [33, Proposition 3.3]).

Proposition A.1. Let \varphi : \Theta \rightarrow \BbbR be an l.s.c. function nonidentically equal to
+\infty . Suppose that there exist a > 0, b \in \BbbR , and \theta 0 \in \Theta such that, for all \theta \in \Theta ,
\varphi (\theta ) + ad(\theta , \theta 0) + b \geq 0. Then, the following three properties are satisfied:

(a) \forall k > a and \forall \theta \in \Theta , \varphi k(\theta ) + ad(\theta , \theta 0) + b \geq 0;
(b) \forall k \geq 1, \varphi k < +\infty on \Theta and \varphi k is a Lipschitz function of constant k;
(c) \forall \theta \in \Theta , the sequence (\varphi k(\theta ))k\geq 1 is increasing and \varphi (\theta ) = supk\geq 1 \varphi 

k(\theta ).

The role of Lipschitz approximations for characterizing epi-convergence is made
clear in the following result (see [33, Proposition 3.4]).

Proposition A.2. Let \varphi n : \Theta \rightarrow \BbbR be a sequence of functions satisfying the
following condition: there exist a > 0, b \in \BbbR , and \theta 0 \in \Theta such that, for every n \geq 1
and \theta \in \Theta , \varphi n(\theta ) + ad(\theta , \theta 0) + b \geq 0. Then, for all \theta \in \Theta ,

epi-lim inf\varphi n(\theta ) = sup
k\geq 1

lim inf
n\rightarrow +\infty 

\varphi k
n(\theta ),(A.6)

epi-lim sup\varphi n(\theta ) = sup
k\geq 1

lim sup
n\rightarrow +\infty 

\varphi k
n(\theta ).(A.7)

15Or, for short, (\varphi n).
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It is also necessary to recall the variational properties of epi-convergence, namely,
the properties related to the convergence of infima and minimizers. For any function
\varphi : \Theta \rightarrow \BbbR such that inf\theta \in \Theta \varphi (\theta ) >  - \infty , the set of exact minimizers of \varphi on \Theta is
denoted by Argmin(\varphi ) and defined by

Argmin(\varphi ) =
\Bigl\{ 
\theta 0 \in \Theta : \varphi (\theta 0) = inf

\theta \in \Theta 
\varphi (\theta )

\Bigr\} 
.

More generally, given \varepsilon > 0, the set of \varepsilon -approximate minimizers (or, for short, \varepsilon -
minimizers) of \varphi is defined by

\varepsilon -Argmin(\varphi ) =
\Bigl\{ 
\theta \varepsilon \in \Theta : \varphi (\theta \varepsilon ) \leq inf

\theta \in \Theta 
\varphi (\theta ) + \varepsilon 

\Bigr\} 
.

Clearly, the set of exact minimizers of \varphi corresponds to \varepsilon = 0. The following result
concerns the convergence of infima and minimizers of an epi-convergent sequence of
functions (see Theorem 7.4 and Corollary 7.20 of [19]).

Proposition A.3. Assume that the sequence (\varphi n) epi-converges to a function \varphi 
in \Theta . For every n \geq 1, let \theta n be a minimizer of \varphi n (or, more generally, an \varepsilon n-
minimizer, where (\varepsilon n) is a sequence of positive reals converging to 0).

(a) If \theta \infty is a cluster point of (\theta n), then \theta \infty is a minimizer of \varphi on \Theta and
\varphi (\theta \infty ) = lim supn\rightarrow +\infty \varphi n(\theta n).

(b) If the sequence (\theta n) converges to \theta \infty \in \Theta , then \theta \infty is a minimizer of \varphi on \Theta 
and one has

\varphi (\theta \infty ) = lim
n\rightarrow \infty 

\varphi n(\theta n) = lim
n\rightarrow \infty 

inf
\theta \in \Theta 

\varphi (\theta ).

Remark A.1. (i) The convergence of (\theta n) to \theta \infty will hold if the metric space \Theta is
compact and if \theta \infty is the unique minimizer of \varphi on \Theta . Indeed, the compactness of \Theta 
implies the existence of a subsequence (\theta nk

) converging to some point \theta \infty , which is a
minimizer of \varphi by statement (a). Since \theta \infty is the unique minimizer of \varphi , it follows
that the whole sequence (\theta n) converges to \theta \infty .

(ii) More generally, this convergence holds if, instead of assuming the compactness
of \Theta , we assume that the sequence (\varphi n) is equi-coercive (see [19] for the definition
and examples). However, in order to get simpler statements, only the compactness
hypothesis on \Theta has been used in this paper.

Appendix B. Further applications.

B.1. Variations on Monte Carlo. Monte Carlo sampling can be modified in
order to obtain more general algorithms. For this purpose, it is convenient to assume
that (\Xi ,\scrX ) is given by the product of two measurable spaces, say (\Lambda ,\scrL ) and (\Omega ,\scrA ),
whose generic elements are denoted by \lambda and \omega , so that (\Xi ,\scrX ) = (\Lambda \times \Omega ,\scrL \otimes \scrA )
and \xi = (\lambda , \omega ). This framework allows \lambda and \omega to be stochastically independent
(when the probability on (\Xi ,\scrX ) is the product of probabilities defined on (\Lambda ,\scrL )
and (\Omega ,\scrA )), stochastically dependent (when this condition is not satisfied), or even
deterministically dependent (for example, when \lambda and \omega are equal). The general
structure of \BbbP n is given by (2.2), where the weights Wi,n can be chosen as described
in (a) and (b) below.

(a) Consider the case in which both the nodes and the weights of numerical
integration result from random drawings. We can take the same formula as (2.2),
where (Wi,n)i=1,...,n is a random vector such that

\sum n
i=1Wi,n = 1 and Wi,n \geq 0 for

i = 1, . . . , n. For example, this holds if (Wi,n)i=1,...,n has the Dirichlet distribu-
tion (see [26]). Asymptotic theory in this case has been worked out in [61]. The
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most prominent example in this area is the classical bootstrap algorithm employed
in statistics. As already seen, it is obtained when (nWi,n)i=1,...,n is a random vector
having the multinomial distribution with all probabilities equal to 1/n (see, e.g., [4,
Pages 49--50]). A review of several bootstrap methods with special emphasis on the
representation in terms ofWi,n can be found in [14]. Laws of large numbers have been
worked out in [4, 3].

(b) Monte Carlo methods can be made more robust using weights that penal-
ize extreme values of Yi. For example, consider the simple case where the points
(Yi)i=1,...,n come from a distribution defined on the real line. Arrange the (Yi)i=1,...,n

in increasing order so as to constitute the order statistics of the sample, that is, the
set of ordered values (Y(i))i=1,...,n, with Y(i) \leq Y(i+1) for i = 1, . . . , n  - 1. Then,
trimming gives null weights to the k = kn largest and smallest observations,

Wi,n =

\left\{     
0, i = 1, . . . , k,

1
n - 2k , i = k + 1, . . . , n - k,

0, i = n - k + 1, . . . , n,

and yields

\BbbP n(\omega , \cdot ) =
n\sum 

i=1

wi,n \cdot \delta Y(i)(\omega )(\cdot ) =
1

n - 2k
\cdot 

n - k\sum 
i=k+1

\delta Y(i)(\omega )(\cdot )

(see the law of large numbers in [2]). A further alternative is Winsorizing, where wi,n

is equal to 0 for any i such that Yi /\in [ - an, an], where (an)n\geq 1 is a given sequence of
positive reals. In all these cases, the weights are deterministic functions of the sample
(Yi)i=1,...,n. A full treatment of these topics can be found in [65, Chapter 7].

B.2. General density approximations. Some other direct approximations of
the density exist in the literature. The Edgeworth expansion, known to work reason-
ably well for approximately normal distributions, is usually introduced as a refinement
of the central limit theorem, but can be also of interest in more general settings (see
[10], or [13, 67] for the multidimensional case). The saddlepoint approximations (see,
e.g., [41]) are more complex to deal with, but often much more accurate in the tails of
the distributions. These methods yield approximations of the densities that depend
on parameters whose value can be increased so as to obtain a greater accuracy. These
parameters can be either known or estimated from a sample (as in subsection 4.3).
They can be used whenever a reference distribution exists and the interest lies in
small deviations with respect to it, such as in quantitative finance.

Remark B.1. In some of the previous examples, even if \BbbP is a probability measure,
the \BbbP n's may be only signed measures. This happens with certain kinds of nonpara-
metric simulated approximation and some other kinds of approximations, such as
Edgeworth expansions. A method that can be used to solve some of these problems
is given in [28]. One can consult [68], for references on kernel and orthogonal series
estimators taking on negative values, and for a nonparametric estimator that does
not integrate to 1. The above methods can be combined: for example, one could
approximate an unknown density using Edgeworth expansion, and then approximate
the integral with respect to this density using numerical integration.

B.3. Deterministic algorithms. As already observed, when the approxima-
tion scheme is purely deterministic, it is no longer possible to invoke SLLN-like results
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(see Remark 3.3). In this section, we present some possible applications in this case.
A few hybrid examples are also sketched to show the flexibility of the method.

Example B.1 (quasi--Monte Carlo). If one uses quasi--Monte Carlo (QMC) in-
tegration, as in Example 2.1, the random sample is replaced by a low discrepancy
point set (yi)i=1,...,n and \BbbP n is given by (2.1). Here, the empirical distribution is not
random, so there is no parameter such as \xi or \omega . QMC integration methods are in
general more efficient than Monte Carlo ones (they have a faster convergence rate).
However, QMC methods require more stringent hypotheses on the behavior of the
function. Indeed, while any Lebesgue integrable function can be integrated using
Monte Carlo algorithms, the use of low discrepancy point sets requires the function
to be Riemann integrable (recall that a real-valued function is Riemann integrable if
and only if it is almost everywhere continuous). The reader is referred to [23] for an
excellent recent survey on QMC.

On the other hand, hybrid techniques appealing to a deterministic sequence per-
turbed by stochastic mechanisms can be considered, such as scrambled nets (see
[50, 49]). In [43], a randomized QMC method is applied to stochastic programming.
This case involves a transition probability \BbbP n(\xi , \cdot ), where the random element \xi does
not arise from sampling from the Y 's but from the ``scrambling"" mechanism. Here, \xi 
simply reduces to \lambda .

Example B.2 (numerical integration rules). Faster convergence rates can be ob-
tained using numerical integration rules. In this case, the approximating measure
reads as

(B.1) \BbbP n(B) =

n\sum 
i=1

wi,n \cdot \delta yi,n(B)

for B \in \scrB (Y), where the sequence of nodes (yi,n)i=1,...,n and the sequence of weights
(wi,n)i=1,...,n (often constrained to respect

\sum n
i=1 wi,n = 1) are chosen so as to optimize

a certain measure of accuracy. For example, an n-point Gaussian quadrature on the
real line is obtained by imposing the condition that the integrals with respect to
\BbbP and \BbbP n coincide for all polynomials of degree 2n  - 1 or less. In this case, \BbbP n is
just a probability, not a transition probability. The use of these methods for the
approximation of stochastic programming problems has been proposed in [54, 52, 55].
This can be solved with the help of epi-convergence following the same lines as in the
previous examples.

Example B.3 (quantization). The idea of quantization is to replace the original
probability measure \BbbP with a discrete one supported by n points, say \BbbP n, so that \BbbP 
and \BbbP n are close together with respect to a certain distance. Consider again a random
variable Y : \Omega \rightarrow Y defined on (\Omega ,\scrA ,\BbbQ ), and \BbbP = \BbbQ Y , the image measure of \BbbQ by Y .
For each nonnegative integer n and 0 < r < +\infty , the n-level Lr-quantization problem
for Y amounts to minimizing

\BbbE \BbbQ min
b\in \beta 

\| Y  - b\| r =

\int 
\bfY 

min
b\in \beta 

\| y  - b\| r \BbbP (dy)

on the set [Y]n = \{ \beta \subseteq Y : \#\beta \leq n\} , namely, over all subsets \beta whose cardinality is
not greater than n. The optimal solution \BbbP n, that is, the discrete probability closest
to \BbbP , can be looked for on the set M([Y]n) of all probability measures on [Y]n. Here,
\BbbP n is given by formula (B.1), where the points constitute a grid \Gamma = \{ y1,n, . . . , yn,n\} 
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and the weights are chosen so that

wi,n = \BbbP n(Y = yi,n) = \BbbP (Y \in Ci)

and Ci is the Voronoi tessel of yi,n \in \Gamma . These techniques were first applied in
information theory (see, e.g., [30]), but they have been used profitably in numerical
integration, as shown in [51]. Two related techniques can be mentioned here: moment
matching, in which a discrete probability measure \BbbP n is built in such a way that its first
moments match the respective moments of \BbbP (see [39]), and optimal discretization,
in which a distance d(\BbbP ,\BbbP n) is minimized for \BbbP n belonging to the class of finitely
supported distributions (see [56]). Once \BbbP n has been determined by one of the above
techniques, our results can be applied to any normal integrand g satisfying the required
conditions.
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