
Econometrics and Statistics 20 (2021) 62–86 

Contents lists available at ScienceDirect 

Econometrics and Statistics 

journal homepage: www.elsevier.com/locate/ecosta 

Model calibration and validation via confidence sets 

Raffaello Seri a , b , Mario Martinoli a , ∗, Davide Secchi b , Samuele Centorrino 

c 

a Department of Economics, Università degli Studi dell’Insubria, Varese, Italy 
b Centre for Computational & Organisational Cognition (CORG), Department of language and communication, University of Southern 

Denmark, Slagelse, Denmark 
c Economics Department, Stony Brook University, Stony Brook, USA 

a r t i c l e i n f o 

Article history: 

Received 29 April 2019 

Revised 27 January 2020 

Accepted 29 January 2020 

Available online 18 February 2020 

Keywords: 

Calibration 

Validation 

Simulated models 

Model confidence set 

Large deviations 

a b s t r a c t 

The issues of calibrating and validating a theoretical model are considered, when it is re- 

quired to select the parameters that better approximate the data among a finite number of 

alternatives. Based on a user-defined loss function, Model Confidence Sets are proposed as 

a tool to restrict the number of plausible alternatives, and measure the uncertainty associ- 

ated to the preferred model. Furthermore, an asymptotically exact logarithmic approxima- 

tion of the probability of choosing a model via a multivariate rate function is suggested. A 

simple numerical procedure is outlined for the computation of the latter and it is shown 

that the procedure yields results consistent with Model Confidence Sets. The illustration 

and implementation of the proposed approach is showcased in a model of inquisitiveness 

in ad hoc teams, relevant for bounded rationality and organizational research. 1 
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1. Introduction 

In the social sciences, there are usually two methods for determining the parameters of a specific model: calibration and

estimation. While the latter is more appealing in a number of cases, it usually requires making additional, and sometimes

arbitrary, assumptions about the way data were generated. Exogenous shocks may be added to the model in an ad hoc

fashion, and point identification and estimation of the model’s parameters are often an issue for complicated, nonlinear

and nonseparable structural equations. Examples of the latter instances are applied general equilibrium analysis, in which

hypotheses for identification and estimation of parameters are often difficult (see Canova and Sala, 2009 , for a discussion on

the issues of identification in dynamic general equilibrium models), and agent-based models (ABM hereafter), that are often

very hard to describe within a unified statistical framework (see, e.g., Gilbert and Terna, 20 0 0; Fagiolo et al., 2007; Gilbert,

2007; Windrum et al., 2007; Di Molfetta, 2016; Guerini and Moneta, 2017; Fagiolo et al., 2019 ). 

Therefore, calibration has evolved to be a very popular method for parameter determination. Calibration allows one to

set model parameters to certain values that are chosen according to prevailing theoretical and/or empirical evidence (see

Brenner, 2006; Crooks et al., 2008 ). This definition of calibration is consistent with most of the economic literature and goes

back at least to the seminal business cycle paper of Kydland and Prescott (1982) (see also Cooley, 1997 and Romer, 2012 ,

Sec. 5.8, p. 217). Calibration is followed by a step that is referred to as model validation (or verification, see Oreskes et al.,

1994 , and Boero and Squazzoni, 2005 ), in which moments of random sequences generated by the model are compared
∗ Corresponding author. 

E-mail address: m.martinoli@uninsubria.it (M. Martinoli). 
1 Code and data are available as an online supplement. 

https://doi.org/10.1016/j.ecosta.2020.01.001 

2452-3062/© 2020 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.ecosta.2020.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ecosta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecosta.2020.01.001&domain=pdf
mailto:m.martinoli@uninsubria.it
https://doi.org/10.1016/j.ecosta.2020.01.001


R. Seri, M. Martinoli and D. Secchi et al. / Econometrics and Statistics 20 (2021) 62–86 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(or eye-balled) with sample moments to show that, given the parameters’ value, the economic model provides outcomes

consistent with observable data. 

From a statistical perspective, drawbacks of this particular definition of calibration and validation are that it does not

usually provide a quantitative measure of distance of the chosen model to the data, and that it does not take into account

the uncertainty related to the choice of a specific vector of parameters. 

This definition has been challenged by Hansen and Heckman (1996) . The authors have noticed that the distinction be-

tween calibration and estimation is “artificial at best” (see also Richiardi et al., 2006 ). They argue that “[calibration] looks

remarkably like a way of doing estimation without accounting for sampling errors in the sample mean”. They further claim

that the validation step used by Kydland and Prescott (1982) is tantamount to testing. They argue that both steps are coming

from the minimization of an implicit loss function which, if made explicit, would make the principle by which a particular

model is chosen easier to understand. 

While there is little agreement as to what “calibration” is, there is even more confusion about what are “verification” and

“validation”. Some authors ( Oreskes et al., 1994 , pp. 6 42-6 43 or Hansen and Heckman, 1996 , pp. 91-92) use “verification”

for the comparison of the output of a calibrated model with the real world. Other authors ( North and Macal, 2007 , pp.

30-31, or Crooks et al., 2008 , p. 419) use “verification” as the process of making sure that the implementation is coherent

with the structure of a model and “validation” as the process of making sure that the implementation is coherent with

the real world, thus leading to an overlap between “validation” and “calibration” ( Crooks et al., 2008 , p. 419). In Richiardi

et al. (2006) , “validation” is used as a check of the adequacy of the simulated model with another model it is intended

to portray. At last, Boero and Squazzoni (2005 , Sec. 2.1-2.4) use “verification” as in North and Macal (2007) , Crooks et al.

(2008) , “calibration” as in Oreskes et al. (1994) , Hansen and Heckman (1996) and “validation” for the comparison of the

output of a calibrated model with an external source of data (see also Fagiolo et al., 2019 ). 

In this paper, we follow the approach suggested in Hansen and Heckman (1996) and consider the issue of calibrating and

validating an economic model by minimization of a user-specified loss function, when researchers need to choose among

several (albeit finite; see also Boero and Squazzoni, 2005 , Sec. 2) combinations of the parameters. The underlying economic

model does not have to admit a closed-form solution, or to be point identified in a statistical sense. It should, however,

be possible to generate series of simulated data from the model itself, for specific configurations of parameters. While the

restriction to a finite number of configurations of the parameters may appear to be a limitation in some cases, it is, in our

opinion, a minor one. First, the number of configurations may be increased at a relatively low computational burden. Second,

most optimization algorithms are based on a finite number of evaluations and on stopping rules that are not guaranteed to

reach the true optimum. Possible extensions to the infinite case are deferred to future work. 

We thus consider the issue of this theoretical model matching some benchmark data. It is important to note that the

benchmark is not necessarily composed of real-world observations: it could also be a function, or results from another

simulation, for example. In some cases, one looks for values of parameters that provide simulations that replicate a deter-

ministic target or achieve a fixed goal (see, e.g., Crooks et al., 2008 ). What is more relevant instead is that the real data

should contain patterns, i.e. “observations of any kind showing nonrandom structure and therefore containing information

on the mechanisms from which they emerge” (see Grimm et al., 2005 , p. 991). The match between the benchmark and the

simulated samples is assessed through a distance. In the following it will be clear that our developments do not rely on any

specific property of a distance. However, we prefer to use this name as most applications will deal with this case. Given

a distance, we propose to construct Model Confidence Sets (MCS) in the spirit of Hansen et al. (2011) . This technique not

only allows us to rank models based on their closeness to the benchmark, but also to construct a plausible set of alter-

native specifications of parameters that cannot be distinguished from the chosen one, at least not in a statistical sense. In

this respect our procedure can be used in a first calibration step, to select the vectors of parameters that are closer to the

benchmark data, and, being related to a testing procedure through the duality between confidence sets and tests (see, e.g.,

Bickel and Doksum, 2015 , Sec. 4.5, p. 241), it can also be used for validation in a second step. Notice that we do not see

the requirement that parameters have discrete support as a drawback. As a matter of fact, most simulation-based estimators

are obtained by sampling from conveniently selected points in the sample space (as sampling from the entire space is often

impossible in practice). Moreover, when used for calibration, our procedure can help identify multiple local optima of the

objective function, when direct minimization would only identify one of those local optima. This feature is especially use-

ful for highly parametrized models where point identification is often impossible to show (see Crooks et al., 2008 , p. 419).

Along the lines of Hansen et al. (2011) , we show that MCS are valid confidence sets when the number of simulated samples,

n , diverges. 

We complement this analysis by characterizing the model’s choice as an estimation problem in which the parameters

have discrete support (see Choirat and Seri, 2012 ). We show that, despite the computation of the probability of choosing

a combination of parameters over the others is probably out of reach, one can still provide, using large deviations theory,

a measure of the rate of decrease of this probability with n through a multivariate rate function, which depends on the

vector of observables. The finite sample approximation of this rate function is interesting for at least two reasons. On the

one hand, it can be used empirically as an alternative metric to establish the plausibility of our set of models. However,

its computation is not straightforward. On the other hand, its theoretical properties have not been explored thus far, to the

best of our knowledge, as published papers only consider rate functions in the univariate context (see, e.g., Duffield et al.,

1995; Duffy and Metcalfe, 20 05a; 20 05b; Rohwer et al., 2015; Duffy and Williamson, 2015 ). In the univariate case, the rate

function needs to be calculated at one point only and this does not involve particular computational issues. In our case,
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however, the measure of the decrease rate of the probability arises from the optimization of a function over a multivariate

domain and this requires high accuracy in the computation of the whole function to be minimized. 

First, we propose a method based on the linear-time Legendre Transform (LLT) to numerically compute the rate function.

As the name suggests, the numerical complexity of this method only grows linearly with the number of data points, and

it thus provides a computationally efficient method, even when the number of observations is large. Second, we show that

this rate function approximation is consistent, and we obtain its rate of convergence. We then perform a short simulation

study to demonstrate the validity of this theoretical result in finite samples. 

We conclude the paper with an application of this methodology to an ABM of inquisitiveness (henceforth, inquisitiveness

ABM ) (see Bardone and Secchi, 2017 ). Inquisitiveness is a development of “docility”, as a strategy that decision makers use to

cope with their bounded rationality ( Simon, 1990; 1993 ) and it has been applied to agent-based simulations recently for its

cognitive links to behavior ( Secchi, 2016; Secchi and Gullekson, 2016; Miller and Lin, 2010 ). A docile individual is someone

who leans on other people’s advice to make decisions. In particular, when docile individuals operate inside a team (or any

community of reference) to solve a problem, trust is placed on the advice of team members, while data coming from outside

the team are mistrusted. An inquisitive individual, instead, does not operate on a team basis but s/he is rather a problem

solver, who may look for help outside the team. We show that both Model Confidence Sets and the approach based on a

rate function approximation yield similar results. This ABM has been selected for three reasons: (a) theoretical relevance, (b)

applicability to other economic domains, and (c) computational simulation robustness. The first criterion entails selecting

a model that is anchored to a solid theoretical background while, at the same time, it should not be a mere replication

of other models. The inquisitiveness ABM is based on Simon’s bounded rationality ( Simon, 1955; 1979; 1997 ). This is a

theory with high relevance, given the value that its theoretical and empirical applications have had in economics in the

recent decades (e.g., Kahneman, 2003; Thaler and Sunstein, 2008; Camerer and Fehr, 2006 ). Inquisitiveness exemplifies the

tension toward finding more suitable theoretical conceptualizations of bounded rationality. At the same time, it has wide

applicability to organizations of various sizes as well as wider economic systems. Finally, the code has been openly peer

reviewed in a certifiable and documentable way, as it is uploaded into OpenABM. This platform is supported by the Network

for Computational Modeling in Social and Ecological Sciences (CoMSES) whose scholars offer peer review specifically on the

code, when modelers ask for it. Among the (very few) models that had been peer reviewed, the one on the inquisitiveness

ticked also all of our other criteria for selection. 

The inquisitiveness model shows high parametrization and nonlinearities in both variables and parameters, and calls for

a rigorous calibration procedure, as it is widely done in ABM research. Alternative procedures have also been extensively

explored (see Gilli and Winker, 2003; Windrum et al., 2007; Winker et al., 2007; Fabretti, 2013; Grazzini and Richiardi,

2015; Recchioni et al., 2015; Grazzini et al., 2017; Guerini and Moneta, 2017; Kukacka and Barunik, 2017; Lamperti et al.,

2018; Fagiolo et al., 2019 ). The most recent trend in calibration of ABM is to apply sound econometric techniques to select

appropriate parameter values (see Chen et al., 2012 ). Methods such as Indirect Inference ( Gilli and Winker, 20 02; 20 03 ), Sim-

ulated Method of Moments ( Winker et al., 2007 ), Simulated Maximum Likelihood ( Kukacka and Barunik, 2017 ), Simulated

Minimum-Distance ( Grazzini and Richiardi, 2015; Recchioni et al., 2015; Lamperti, 2018a; 2018b ), and Approximate Bayesian

Computation ( Grazzini et al., 2017 ) have emerged as calibration techniques in ABM. We believe there are three main draw-

backs of performing calibration in this way. First, its results may vary widely depending on sample selection, as models are

not necessarily identified, and therefore uniqueness of the optimum is not guaranteed (not even asymptotically). Similarly,

there has been little effort to formally characterize the uncertainty associated to a specific choice of parameters ( Seri and

Secchi, 2017 ). Finally, given the high parametrization of ABM, computational costs can be extremely high (e.g., Thiele et al.,

2015; Lorscheid and Meyer, 2016 ). Our technique is instead computationally fast, and effectively uses the sample to validate

one or more choices of parameters. 

Our procedure bears a resemblance with other ones introduced in the literature. For instance, Lamperti et al. (2018) use

Surrogate Meta Models and Machine Learning to search the parameter space. Their iterative technique is based on a surro-

gate model which learns from an initial random subset of parameter combinations. We perceive that our method is similar

in spirit, although one learns from a finite number of combinations of parameters that are directly specified by users, instead

of being determined iteratively from a (finite-dimensional) subset of the parameter space. Similarly, Barde (2016) applies the

methodology developed by Barde (2017) to select among different models, scoring each one of them at the level of individ-

ual empirical observations. Differently from Barde (2016) , we rigorously study the construction of a Model Confidence Set

and we provide the statistical properties of the rate function. 

Our approach can complement existing ones, and be used in a validation step to compare estimates obtained by any

of the aforementioned estimation methods. By appropriately splitting the data into a fitting sample and a training sample,

one can obtain several plausible parameter values from an initial estimation step, and then compare them in a testing (or

validation) step using MCS. 

The paper is structured as follows. The mathematical notation that is needed for the discussion of the model is intro-

duced in Section 2 . Section 3 presents the statistical framework and provides the asymptotic relations between the prob-

abilities of choosing a model and the rate functions. Section 4 discusses the construction of Model Confidence Sets for a

problem of calibration. Section 5 outlines the numerical approximation of the rate function and provides its statistical prop-

erties. Readers more interested in the application of our procedure can directly move to Section 6 . We provide an outline of

our findings in Section 7 . All technical proofs are relegated to the Appendix . 
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2. Notations 

This section introduces the notation that will be used throughout the paper. Capital bold letters, such as A , denote

matrices while lowercase bold letters, such as a , usually denote vectors. The i −th element of vector a is generally denoted

a i . u n is a n -vector composed of ones. I n is the ( n × n )-identity matrix. U n is a ( n × n )-matrix composed of ones. e i , n is a

n -vector of zeros with a one in the i -th position; when the length is clear from the context we simply use e i . 0 m , n is a

( m × n )-matrix composed of zeros. We do not indicate the dimensions when they are clear from the context. diag( a ) is a

diagonal matrix with a on its diagonal. A 

′ and A 

−1 are respectively the transpose and the classical inverse of the matrix A ,

provided they exist. 

For a set A , the notations int A , A , ∂A , co A and co A respectively denote the interior, the closure, the boundary, the convex

hull and the closed convex hull of A . The positive half-line is R + := { x ∈ R : x ≥ 0 } . The positive orthant is R 

d + := (R + ) d .
Hyperplanes are indicated with the point-normal notation, i.e. as { x ∈ R 

d : x ′ α = v ′ α} where α is a normal vector and v is

a point of the hyperplane. The same notation is used for a half-space as H 

+ ( α, v ) := { x ∈ R 

d : x ′ α ≥ v ′ α} . For a scalar β ,

βA := { βx : x ∈ A }. 

We introduce the definition of the effective domain of a function f : R 

d → R as D( f ) := { x ∈ R 

d : f (x ) < ∞} (see Dembo

and Zeitouni, 2010 , p. 4). The Legendre or Legendre-Fenchel transform of f is the function f � : R 

d → R defined by the vari-

ational formula f � (y ) := sup x ∈ R d { y ′ x − f (x ) } . f � is also said to be the convex conjugate of f . χA is the (convex analysis)

characteristic function taking the value 0 in A and + ∞ outside. 

Expectations are denoted as E . When the integration variable is not clear from the context, we indicate it explicitly as

a subscript as in E x . We will do the same for the variance V x . For a random vector X taking values in R 

d , we define the

moment generating function ( MGF ) of X as M(u ) := E exp { u 

′ X } and the cumulant generating function ( CGF ) as �( u ) := ln M ( u ).

3. Framework and preliminary results 

Let y be a vector of benchmark observations, that can contain individual level data, a time series, etc. It can be deter-

mined by a deterministic or a stochastic mechanism, but in any case it is supposed to be fixed in the subsequent analysis.

Fixing the outputs y may come from the difficulty in modelling the real-world phenomenon leading to the data, or from an

interest in the real-world data rather than in the data generating process (DGP) leading to them. 

Example 1 (Multiple outputs) . Suppose that the simulation model describes a situation characterized by several outputs y =
(y 1 , . . . , y p ) measured at the same time. The researcher may be interested in looking for the parameters of the simulation

model yielding outputs that are as similar as possible to these observations, without the need to model the DGP leading to

these data. 

Example 2 (Time trend) . Consider a simulation model describing the evolution of a system over time. In this case y =
(y 1 , . . . , y t ) may be a time series. 

Example 3 (Spatial patterns) . In some cases, the aim of the simulation is to simulate the spatial patterns arising from a

complex system. This situation takes place in the study of animal diffusions, geographical plant distributions, etc. In this

case y is a curve in a space or a spatial distribution of points. 

We assume to have m 0 configurations of parameters, say θ i for i = 1 , . . . , m 0 . We will not need any special structure

on the set of possible parameters. The set of all parameters is denoted by M 

0 := { 1 , . . . , m 0 } . For each one of them, we

simulate n realizations z j ( θ i ), for j = 1 , . . . , n . We compute the distances d ( y , z j ( θ i )) for i ∈ M 

0 and j = 1 , . . . , n . Here and in

the following we will use the term distance loosely; as an example, we will never use any specific property of a distance,

such as non-negativity or the triangle inequality. 

Example 4 (Multiple outputs - Example 1 continued) . A reasonable choice of a distance is: 

d(y , z j (θi )) = 

p ∑ 

h =1 

a h | y h − z jh (θi ) | , 

where the a h ’s, for h = 1 , . . . , p, are constants keeping into account the different contributions of the observations to the

overall distance. 

Example 5 (Time trend - Example 2 continued) . The time series case admits several distances, with different interpretations.

In the ergodic case, when a single instance of a time series is sufficient to estimate probabilities of events, one can consider

distances between the probability measures that generated the data. In this case it is quite natural to keep into account the

DGP of y when drawing inferences. For a review of metrics or similarity measures for statistical data processes see Basseville

(2013) and Marks (2013) . Two further interesting contributions are provided by Barde (2017) and Lamperti (2018b) . Other

distances cannot be cast as metrics between the probability measures that generated the data, but only as distances between

the trajectories over time. These distances are probably more interesting for the following as they apply to trending non-

ergodic time series (e.g., Liao, 2005; Fu, 2011; Wang et al., 2013 ). 
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Example 6 (Spatial patterns - Example 3 continued) . If one considers an animal roaming in a certain area, several distances

can be considered, such as the Fréchet distance, used for dynamic time warping (see Kruskal, 1983; Berndt and Clifford,

1994; Gudmundsson et al., 2008 ). 

We introduce the following notations. The expected distance relative to the i -th combination of parameters is D i :=
E z d(y , z (θi )) . We denote as D := ( D 1 , . . . , D m 0 

) ′ the vector containing the average distances. The distance corresponding to

the j -th realization and the i -th combination of parameters is D j , i := d ( y , z j ( θ i )), and the sample average distance is D n,i :=
1 
n 

∑ n 
j=1 D j,i . Let us define the m 0 -vector: 

D n := 

(
D n, 1 , . . . , D n,m 0 

)′ 
. 

If we denote: 

D k := 

(
D k, 1 , . . . , D k,m 0 

)′ 
for k = 1 , . . . , n, we can write D n = 

1 
n 

∑ n 
k =1 D k . 

We want to identify the values i corresponding to the smallest expected distance D i . Other criterion choices may be

more relevant in some situations but in this case, we consider only the expected distance. The set of parameters achieving

the minimal distance is denoted as M 

� := { j ∈ M 

0 : D j = min i ∈M 

0 D i } . It is clear that a choice would be to take the value ̂  i n 

minimizing D n,i for i ∈ M 

0 . We suppose that ̂  i n is always single valued while M 

� may not be a singleton. 

The choice of a value from a finite set can be characterized as a discrete-parameter estimation problem (see Choirat and

Seri, 2012 ) or as a classification problem. In the following we characterize the behavior of ̂  i n as in Choirat and Seri (2012) .

We can write: 

P 

{̂
 i n = j 

}
= P 

{̂ θn = θ j 

}
= P 

{
D n, j ≤ D n,i , 1 ≤ i ≤ m 0 , i 	 = j 

}
= P 

{
D n ∈ P j 

}
where P j is the (unbounded) polytope characterized by the inequalities: 

P j := 

{
x ∈ R 

m 0 : x j ≤ min 

1 ≤� ≤m 0 ,� 	 = j 
x � 

}
. 

Fig. 1 provides a graphical representation of P 3 = { x ∈ R 

3 : x 3 ≤ min { x 1 , x 2 }} in R 

3 . 

Note that, in the previous definition, there is no special reason to use strict inequalities instead of non-strict ones. As the

polytopes are a partition of the whole space, D can belong to one and only one of the polytopes. But in some cases, D may

be on the face between two or more polytopes and, as the attribution of the faces to one polytope or another is arbitrary,

we prefer to explicitly allow M 

� not to be a singleton. For any j / ∈ M 

� , our assumptions guarantee that the probability

P { D n ∈ ∂P j } is asymptotically negligible, i.e. that P { D n ∈ int P j } and P { D n ∈ P j } behave similarly for any j / ∈ M 

� . This makes

immaterial whether the faces of each P j are attributed to a polytope or the other. 

Once the attribution of the faces is solved, the polytopes {P j , j ∈ M 

0 } form a partition of R 

m 0 . Under appropriate as-

sumptions (see A1 below), Khintchin’s WLLN shows that D n converges in probability to D . This implies that: 

P 

{̂
 i n ∈ M 

}
= P 

{ 

D n ∈ 

⋃ 

j∈M 

P j 

} 

→ P 

{ 

D ∈ 

⋃ 

j∈M 

P j 

} 

for any M ⊂ M 

0 . It is clear that: 

P 

{̂
 i n ∈ M 

� 
}

= P 

{ 

D n ∈ 

⋃ 

j∈M 

� 

P j 

} 

→ 1 

while P { ̂  i n = j} = P { D n ∈ P j } → 0 for any j / ∈ M 

� . In the following we show that the probabilities like P { ̂  i n = j} for any

j / ∈ M 

� converge to 0 exponentially fast and we characterize the rate of exponential convergence of these probabilities. 

This shows that our estimator ( ̂  i n ) is consistent, i.e. it takes a value in the set of minimizers of the average distance ( M 

� )

with probability converging to 1 as the number of replications ( n ) diverges. Moreover, the probability of the estimator ( ̂  i n )

taking any value outside the set of minimizers of the average distance ( M 

� ) converges to 0 exponentially. As in Choirat and

Seri (2012) , the estimator has an exponential convergence rate. In the following, we try to characterize, and then estimate,

the rate of convergence to 0 of this probability. This is done through large deviations principles (LDP). 

As they do not belong to the toolbox of the average econometrician, it is useful to provide a brief explanation of LDP

in the case that is most relevant for our purposes (Corollary 6.1.6 in Dembo and Zeitouni, 2010 , p. 253). Let { X 1 , . . . } be a

sequence of independent and identically distributed random vectors. If E X exists, X n := 

1 
n 

∑ n 
k =1 X k converges almost surely

to E X . For a given set A ⊂ R 

d , E X ∈ A implies that P { X n ∈ A } → 1 . Instead, if E X / ∈ A, P { X n ∈ A } → 0 exponentially fast. In

particular, 1 
n ln P { X n ∈ A } is asymptotically bracketed between two bounds depending on the distribution of X 1 and on the

set A . These bounds can respectively be expressed as the infimum over int A and A of a so-called rate function �� that is the
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Fig. 1. Polytope P 3 in R 3 : the dark grey surfaces delimit P 3 from above; the light grey rectangles represent the three planes x 1 = 0 , x 2 = 0 and x 3 = 0 ; the 

dashed lines are the intersections of the planes x 1 = 0 , x 2 = 0 and x 3 = 0 ; the solid thin lines are the intersections of the previous planes with the surfaces 

delimiting P 3 . 

 

 

 

 

 

 

 

Legendre-Fenchel transform of the CGF � of X 1 . When the set A and the random vector X 1 are sufficiently well behaved, the

infima over int A and A coincide and one can identify a limit of 1 
n ln P { X n ∈ A } . This limit can be expressed as the infimum

of the rate function over the set A , where the infimum is generally located on the boundary of A . The point in which the

infimum is reached is called a dominating point (see Ney, 1983; 1984 ) and it can be used to express the large deviations

result in an alternative way. 

The role played by the CGF and by its Cramér transform in these bounds can be justified considering the upper bound.

The derivation of the lower bound is too complicated to be explained here. We consider the scalar case with A = [ x, ∞ ) . For

every λ≥ 0, the Chernoff bound yields: 

P 

{
X n ∈ [ x, ∞ ) 

}
= E 1 

{
X n − x ≥ 0 

}
≤ E exp 

{
λ
(
X n − x 

)}
= exp { −λx } 

n ∏ 

k =1 

E exp 

{
λ

n 

X k 

}
= exp { −λx } 

[
M 

(
λ

n 

)]n 

= exp 

{
−λx + n �

(
λ

n 

)}
where we have used the inequality 1 { x ≥ 0 } ≤ exp { λx } for λ≥ 0. As λ≥ 0 is arbitrary, we have: 

P 

{
X n ∈ [ x, ∞ ) 

}
≤ exp 

{
inf 
λ≥0 

[
−λx + n �

(
λ

n 

)]}
= exp 

{
− sup 

λ≥0 

[
λx − n �

(
λ

n 

)]}
= exp 

{
−n sup 

η≥0 
[ ηx − �( η) ] 

}
= exp { −n �� ( x ) } 

or 1 
n ln P { X n ∈ [ x, ∞ ) } ≤ −�� (x ) . If η� is the dominating point, i.e. the point η� at which η� x − �(η� ) = sup η≥0 [ ηx − �(η)] ,

we have: 

P 

{
X n ∈ [ x, ∞ ) 

}
≤ exp { −n [ η� x − �( η� ) ] } . 
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This justifies the logarithmic asymptotics of the probabilities and explains the rationale behind the assumptions we are

going to put forward. Indeed, they guarantee that a dominating point exists or, equivalently, that �( · ) is sufficiently well

behaved that sup η≥0 [ ηx − �(η)] takes a finite value. 

Now we turn to the assumptions. The following one contains the basic properties of the distances. It may be useful to

explain its rationale. Each simulation run z j ( θ i ) is independent of all the other runs for each j ∈ { 1 , . . . , n } and i ∈ M 0 . For

fixed i ∈ M 0 , the simulation runs z j ( θ i ) are also identically distributed across j ∈ { 1 , . . . , n } . As a result, the distances D j , i

share the same independence properties. This is sufficient to yield consistency and measurability of the estimator ̂  i n (see

Choirat and Seri, 2012 , Proposition 1, p. 280 for a slightly different result). 

A1 For k = 1 , . . . , n the vectors D k are independent and identically distributed. For each j ∈ M 

0 , the distances D k , j are

independent. The mean E D k, j exists and is finite for each j ∈ M 

0 . 

As briefly explained above, in order to obtain a LDP we need some functions related to the vector D k . We define the MGF

and CGF of D k : 

M ( u ) = E exp 

{
u 

′ D k 

}
= E exp 

{ 

m 0 ∑ 

� =1 

u � D k,� 

} 

= 

m 0 ∏ 

� =1 

E exp { u � D k,� } = 

m 0 ∏ 

� =1 

M � ( u � ) 

and: 

�( u ) = 

m 0 ∑ 

� =1 

ln M � ( u � ) = 

m 0 ∑ 

� =1 

�� ( u � ) . 

We introduce the Legendre-Fenchel or Cramér transform of � as: 

�� ( y ) : = sup 

u ∈ R m 0 

{
y ′ u − �( u ) 

}
= sup 

u ∈ R m 0 

m 0 ∑ 

� =1 

{ y � u � − �� ( u � ) } 

= 

m 0 ∑ 

� =1 

sup 

u � ∈ R 
{ y � u � − �� ( u � ) } = 

m 0 ∑ 

� =1 

�� 
� ( y � ) . 

We now state three technical assumptions. The first one (A2) guarantees that the level sets of �� , i.e. the sets { u ∈ R 

d :

�� (u ) ≤ α} , are compact, a property that is useful in order to compute the infimum of the rate function over a set (see

Theorem 1 ). The second one (A3) forces the upper and the lower bounds to be equal. The third one (A4) guarantees that,

for any two parameter values θ j and θ i , the supports of the distances D k , j and D k , i intersect, otherwise the probabilities

involving them may end up to be identically equal to 0 or 1. More complete discussions of these assumptions are contained

in the paragraphs following them. 

A2 There exists δ > 0 such that, for any η ∈ (−δ, + δ) , �� ( η) < ∞ for any � ∈ M 

0 . 

It may be interesting to discuss this assumption in greater detail. It is well known that the CGF at the origin is 0, as

the MGF is equal to 1. This assumption requires something more, i.e. that the MGF exists in a neighborhood of the origin,

and can be shown (see, e.g., Choirat and Seri, 2012 , Lemma 1, p. 281) to be equivalent to the requirement that the so-

called Cramér condition 0 ∈ int D(�) holds true. This ensures that the level sets of �� , i.e. the sets { u ∈ R 

d : �� (u ) ≤ α} , are

compact. See Ney and Robinson (1995) for large deviations principles without this assumption. 

A3 Let D � := int { u ∈ R : �� (u ) < ∞} . For any � ∈ M 

0 , the function �� is steep , i.e. for any sequence { u m 

} in int D � con-

verging to a boundary point of D � : 

lim 

m 

∣∣�′ 
� ( u m 

) 
∣∣ = ∞ . 

If the aim of the analysis is to bracket asymptotically the quantity 1 
n ln P { ̂  θ = θ j } between two constants, one can dispense

with the previous assumption. Otherwise, if the aim is to obtain a more precise limit, this assumption is not necessary

but very comfortable, as the results that do not use it are generally quite complex (see, e.g., Comman, 2009 ). This can

be linked to another problem arising in large deviations. Consider the scalar case and suppose that � is not steep, i.e.

lim m 

| �′ (u m 

) | = λ < ∞ for u m 

→ u ∞ 

with u ∞ 

∈ ∂D(�) . Convex conjugacy implies that �′ (u ) = y is equivalent to u = ��, ′ (y ) .

This implies that �� is linear with slope u ∞ 

for y > λ, if u ∞ 

is the right endpoint of D(�) , or for y < −λ, if u ∞ 

is the left

endpoint of D(�) . Therefore, the rate function �� is not strictly convex. In this case, large deviations principles are not

guaranteed to hold (see, e.g., De Marco et al., 2016 ). 

A4 Let [ L h , U h ] be the closure of the convex hull of the support of the law of D k , h for h ∈ M 

0 . Let j be the index of the

parameter under scrutiny, i.e. P { ̂  θ = θ j } . Then U � > L j for any � ∈ M 

0 . 
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In order to see what can go wrong when this assumption is not verified, consider the case when M 

0 = { 1 , 2 } . Suppose

that L 2 > U 1 or, equivalently, that [ U 2 , L 2 ] ∩ [ U 1 , L 1 ] = ∅ . Then, for any n : 

P 

{̂
 i n = 1 

}
= P 

{̂ θn = θ1 

}
= P 

{
D n, 1 ≤ D n, 2 

}
= 1 

and P { ̂  i n = 2 } = 0 . This implies that 1 
n ln P { ̂  i n = 2 } = −∞ and the LDP does not apply. This also suggests that combinations

of parameters for which the hypothesis is not verified can be safely removed from M 

0 as they dominate or are dominated

by the other ones. 

Theorem 1. Suppose that j / ∈ M 

� . Then, under A1: 

lim inf 
1 

n 

ln P 

{̂ θ = θ j 

}
≥ − inf 

y ∈ int P j 
�� ( y ) . 

Under A1-A2: 

lim sup 

1 

n 

ln P 

{̂ θ = θ j 

}
≤ − inf 

y ∈ P j 
�� ( y ) . 

Under A1-A4: 

lim 

1 

n 

ln P 

{̂ θ = θ j 

}
= − inf 

y ∈ int P j 
�� ( y ) = − inf 

y ∈ P j 
�� ( y ) . 

Under A1-A4: 

inf 
y ∈ P j 

�� ( y ) = ̃

 u 

′ ˜ y − �( ̃  u ) 

where: 

• ˜ y ∈ ∂P j ; 

• the equation (�′ ) −1 ( ̃  y ) = ̃

 u has a unique solution ̃  u ; 

• P j ⊂ H 

+ ( ̃  u , ̃  y ) . 

Remark 1. (i) The requirement that j / ∈ M 

� is quite natural. Indeed, if j ∈ M 

� , D j = min i ∈M 

0 D i and D ∈ P j . Now, �� ( D ) = 0

and �� ( y ) > 0 for any y 	 = D . Therefore, if j ∈ M 

� : 

lim 

1 

n 

ln P { ̂  θ = θ j } = − inf 
y ∈ P j 

�� ( y ) = −�� 
(
D 

)
= 0 . 

(ii) It is easy to see why inf y ∈ int P j �
� (y ) = inf y ∈ P j �

� (y ) provides a measure of improbability. Each probability P { ̂  θ = θ j } is

associated with the infimum of the same function �� ( · ) over a different set P j . Now, the function �� ( · ) is strictly convex,

positive and has a single zero in D . When j is such that P j is far away from D , inf y ∈P j �
� (y ) will be larger than 0. The

farther away from D is P j , the larger is inf y ∈P j �
� (y ) , and the faster is the convergence of P { ̂  θ = θ j } to 0. This establishes a

relation connecting the distance between P j and D , on the one hand, and the rate of decrease of P { ̂  θ = θ j } . 
(iii) This kind of large deviations result provides a formula for the logarithm of the probability. In a similar context, it

was shown by Choirat and Seri (2012) that exact or sharp large deviations results and saddlepoint approximations were

able to provide valid approximations for the probabilities (and not only for their logarithms). However, in this paper we

do not investigate exact large deviations or saddlepoint approximations. The reason is that we aim at using them for the

computation of some measures of precision, and exact large deviations are not suitable for this purpose (see the end of

Section 5 ). 

Example 7. In order to illustrate the principle behind the formulas, we consider the following example. We suppose that

D k ,1 is a sample of n exponential random variables with parameter 2 (and mean 1/2) and D k ,2 is a sample (independent of

the previous one) of n exponential random variables with parameter 1 (and mean 1). We want to study: 

P 

{
D n, 1 ≥ D n, 2 

}
= P 

{ 

n ∑ 

k =1 

D k, 1 ≥
n ∑ 

k =1 

D k, 2 

} 

= P 

{ 

n ∑ 

k =1 

D k ∈ P 2 

} 

, 

where D k := ( D k ,1 , D k ,2 ) 
′ . We have: 

M ( u ) = 

2 

2 − u 1 

· 1 

1 − u 2 

, 

�( u ) = ln 2 − ln ( 2 − u 1 ) − ln ( 1 − u 2 ) 

and 

�� ( y ) = 2 y 1 − ln y 1 + y 2 − ln y 2 − ln 2 e 2 . 
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Fig. 2. Example 7 : level curves of the function �� (in thin solid lines), level curve corresponding to �� (·) = ln (9 / 8) (in thick solid line), points ̃  y = 

(3 / 2 , 3 / 2) ′ and D = (1 / 2 , 1) ′ , half-plane P 2 (in shaded grey area). 

 

 

 

 

The equation ̃

 y = �′ ( ̃  u ) is: {˜ y 1 = 

1 
2 −˜ u 1 

, ˜ y 2 = 

1 
1 −˜ u 2 

. 

As ̃  y ∈ ∂P 2 , ˜ y 1 ≡ ˜ y 2 and 

˜ u 2 = ̃

 u 1 − 1 . As P 2 ⊂ H 

+ ( ̃  u , ̃  y ) , the vector ˜ u must be normal to the line ˜ y 1 ≡ ˜ y 2 , or ˜ u 1 = −˜ u 2 . The

final solution is ˜ u 1 = 1 / 2 , ˜ u 2 = −1 / 2 , and ̃

 y 1 = ̃

 y 2 = 

2 
3 . As a result: 

inf 
y ∈ P 2 

�� ( y ) = �� ( ̃  y ) = ̃

 u 

′ ˜ y − �( ̃  u ) = ln ( 9 / 8 ) 
. = 0 . 1177830357 . 

This means that: 

lim 

1 

n 

ln P 

{
D n, 1 ≥ D n, 2 

}
= − ln ( 9 / 8 ) . 

Fig. 2 provides a graphical representation of the function �� . 

4. The model confidence set 

In this section we investigate the construction of a Model Confidence Set, i.e. a subset of M 

0 containing the models

minimizing the average distance with prescribed probability. We will investigate the properties of the procedure under the

assumption that n , the number of runs per each configuration of parameters, diverges. 

4.1. The general procedure 

The method starts from a set M 

0 := { 1 , . . . , m 0 } . In the following, M ⊂ M 

0 denotes a generic set of discrete parameters.

The iterative procedure is based on an equivalence test δM 

and a selection rule e M 

, that are associated to the set M . 
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The test δM 

is used to test the null hypothesis: 

H 0 , M 

: D i = D j , ∀ i, j ∈ M . 

We defined above M 

� := { j ∈ M 

0 : D j = min i ∈M 

0 D i } . Note that H 0 , M 

� is true while H 0 , M 

is false whenever M 	⊆ M 

� . We

also introduce the alternative hypothesis: 

H A, M 

: ∃ i, j ∈ M such that D i 	 = D j . 

We say that δM 

= 1 when the test rejects the null hypothesis and δM 

= 0 when it does not reject it. 

The elimination rule e M 

is used to delete an element from M when δM 

= 1 . We suppose that e M 

takes its values in M ,

so that the result of the elimination rule is to pass from M to M\ e M 

. 

One starts from the set M = M 

0 and performs the test δM 

= δM 

0 . If the test is rejected, then an elimination step e M 

=
e M 

0 is performed to get a new set M 1 . The process is repeated until the test δM 

does not reject the null hypothesis. The

final set of models is called 

̂ M 

� . If all the tests are performed at the same significance level α, one can explicitly writê M 

� = 

̂ M 

� 
1 −α . 

4.2. The implementation 

In order to build a MCS, we have to choose a test procedure δM 

and an elimination procedure e M 

. 

As a test procedure δM 

, we suppose to estimate the mean D i := E z d(y , z (θi )) and the variance σ 2 
i 

:= V z [ d(y , z (θi ))]

corresponding to each value of θ i , through Gaussian quasi-likelihood. We will need the following assumptions. 

A5 The variances σ 2 
i 

are finite for any i ∈ M 

0 . 

Consider the estimators D n,i := 

1 
n 

∑ n 
j=1 d(y, z j (θi )) and 

̂ σ 2 
i 

:= 

1 
n 

∑ n 
j=1 d 

2 (y, z j (θi )) − D 

2 

n,i . Suppose that we want to test

that all D i ’s are equal. We write D = ( D 1 , . . . , D m 

) ′ and 

� := 

⎡ ⎣ 

σ 2 
1 · · · 0 

. . . 
. . . 

. . . 

0 · · · σ 2 
m 

⎤ ⎦ . 

Let �−1 be the (m − 1 , m − 1) -matrix obtained from � removing the first line and column. In the following, an estimator is

indicated adding a hat to the same symbol used for the corresponding parameter. Consider the matrix A defined by: 

A = 

⎡ ⎣ 

1 −1 · · · 0 

. . . 
. . . 

. . . 
. . . 

1 0 · · · −1 

⎤ ⎦ = 

[
u m −1 −I m −1 

]
. 

The null hypothesis H 0 , M 

is that A D = 0 m −1 , 1 . The test statistic is: 

W M 

= n 

(
A D n 

)′ [̂ σ 2 
1 U m −1 + ̂

 �−1 

]−1 (
A D n 

)
. 

As an elimination procedure e M 

, we choose the index j ∈ M with the largest value D n, j , i.e. we identify e M 

:=
arg max j∈M 

D n, j . 

Theorem 2. Let the test procedure δM 

be based on the test W M 

, with asymptotic distribution W M 

D → χ2 
m −1 

, and let the elimina-

tion procedure e M 

be based on the elimination from M of the index j ∈ M with the largest value D n, j . Then, under A1 and A5,

we have: 

• lim n →∞ 

P {M 

� ⊂ ̂ M 

� 
1 −α} ≥ 1 − α, 

• lim n →∞ 

P { i ∈ 

̂ M 

� 
1 −α} = 0 i / ∈ M 

� . 

Remark 2. The confidence interval obtained in this way will likely be conservative. Indeed, in Corollary 1 in Hansen et al.

(2011 , p. 460) it is shown that, when M 

� is a singleton, lim n →∞ 

P {M 

� = 

̂ M 

� 
1 −α} = 1 . 

There is an alternative way to see the procedure. We set M 1 := M 

0 . Then, let us define a sequence of subsets of M 

0

through the elimination rule as: 

M i +1 = M i \ e M i 
i = 1 , . . . , m 0 − 1 

or: 

M i = 

{
e M i 

, e M i +1 
, . . . , e M m 0 

}
. 

In our case, this amounts to ordering the elements M 

0 according to the value of D n, j , from the largest to the smallest. 
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To each element e M i 
, we can associate the p -value of the test procedure δM i 

to test the null hypothesis H 0 , M i 
. We call

this p -value p H 0 , M i 
, with the convention that p H 0 , M m 0 

≡ 1 . These p -values are not necessarily decreasing in i . However, it is

possible to define an MCS p -value as: ̂ p e M j 
:= max 

i ≤ j 
p H 0 , M i 

. 

The interest of the MCS p -values ̂ p e M j 
, for j = 1 , . . . , m 0 , is that i ∈ 

̂ M 

� 
1 −α if and only if ̂ p i ≥ α. This allows us to compute

the MCS over a range of values α. In this case, the MCS can be used to assess the stability of the optimal solution. 

5. Estimation of rate functions 

The asymptotic behavior of the probability is dictated by the infimum of the rate function �� ( · ) over the polytope P j .

This infimum can be approximated as in Duffield et al. (1995) , Duffy and Metcalfe (20 05a; 20 05b) : in the following we will

provide a method of approximation. 

5.1. Approximating the rate function 

Consider the empirical moment generating function defined by ̂ M (u ) := 

∏ m 0 
� =1 

̂ M � (u � ) , where ̂ M � (u � ) :=
1 
n 

∑ n 
k =1 exp { u � D k,� } . Let ̂ �� (u � ) := ln ̂

 M � (u � ) and 

̂ �(u ) := 

∑ m 0 
� =1 ̂

 �� (u � ) . We define: 

̂ �� ( y ) := sup 

u ∈ R m 0 

[
u 

′ y − ̂ �( u ) 
]

= 

m 0 ∑ 

� =1 ̂

 �� 
� ( y � ) 

where ̂ �� 
� (y � ) := sup u � ∈ R { y � u � − ̂ �� (u � ) } . 

We will need the following assumption. 

A6 Both L i and U i are finite for i ∈ M 

0 . 

The assumption that the support of the law of D k , i is bounded can be replaced by an assumption of equi-coercivity on 

̂ �� 
i 

(see Dal Maso, 1993 , Chapter 7). As equi-coercivity is rather specialized and difficult to check, we prefer to use the simpler

and more manageable assumption of boundedness, that is customary in this literature ( Duffy and Metcalfe, 2005a; 2005b ). 

Theorem 3. Suppose that j / ∈ M 

� . Under A1-A4 and A6: 

lim 

n →∞ 

inf 
y ∈P j ̂

 �� ( y ) = inf 
y ∈P j 

�� ( y ) 

and, for n large enough: 

inf 
y ∈ P j ̂

 �� ( y ) = ̂

 u 

′ ̂ y − ̂ �( ̂  u ) 

where: 

• ̂ y ∈ ∂P j ; 

• the equation ( ̂  �′ ) −1 ( ̂  y ) = ̂

 u has a unique solution ̂  u ; 

• P j ⊂ H 

+ ( ̂  u , ̂  y ) . 

This approximation can be studied from two further points of view. First of all, computational issues arise in the identi-

fication of the rate function and of the dominating point. Second, one may be interested in its statistical properties and, in

particular, its rate of convergence. We will investigate these points in the following sections. 

5.2. Computation of the rate function 

In this paper, we will estimate ̂ �� 
� through one of the algorithms in Lucet (1997) and Lucet (2009) , in particular the

LLT algorithm of Lucet (1997) . The name indicates that the algorithmic complexity of the algorithm, as measured by the

number of operations, is a linear function of the number of function evaluations. In particular, if a grid of q points is used

to approximate ̂ �� and if one needs the values of ̂ �� 
� on a grid of p points, the worst-case time complexity of the LLT

algorithm is O (q + p) . A graphical representation of the algorithm is in Fig. 3 (see below for details). The figure represents

the case in which �� is estimated using n = 10 observations extracted from an exponential distribution with parameter 1.

Note that, when referring to the figure, we remove the index � from functions and scalars. 

Let us start with 

̂ �� (u ) = ln ̂

 M � (u ) = ln 

1 
n 

∑ n 
k =1 exp { uD k,� } (here and in the following we drop the index � from the argu-

ments u � and y � ). It is clear that: 

ln 

1 

n 

exp 

{ 
u max 

k 
D k,� 

} 
≤ ̂ �� ( u ) ≤ ln 

1 

n 

n ∑ 

k =1 

exp 

{ 
u max 

k 
D k,� 

} 
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Fig. 3. Illustration of the LLT algorithm with q = 9 for n = 10 observations extracted from an exponential distribution with parameter 1. 

Upper-left quadrant: CGF �(u ) = − ln (1 − u ) (in black), estimated CGF ̂ �(u ) (in grey), two asymptotes with slope max k D k and min k D k . 

Upper-right quadrant: points { (u i , ̂
 �(u i )) , i = 1 , . . . , 9 } , piecewise linear approximation 

˜ ̂ � to the empirical CGF ̂ �, four values c 1 , u 1 , c 8 and u 9 . 

Lower-left quadrant: points { (c i , ̃
 ̂ �
� 

(c i )) , i = 1 , . . . , 9 } , piecewise linear approximation 
˜ ̂ �

� 

(in black), empirical Legendre transform 

̂ �� (in grey), four values 

y 1 := c 1 , u 1 = ̃

 ̂ �
�, ′ 

(c 1 ) , y 8 := c 8 and u 9 = ̃

 ̂ �
�, ′ 

(c 8 ) . 

Lower-right quadrant: modified version of 
˜ ̂ �

� 

with effective domain equal to [min k D k , max k D k ] (in black), true rate function �� (y ) = y − 1 − ln y for the 

exponential case (in grey). 
and 

− ln n + u max 
k 

D k,� ≤ ̂ �� ( u ) ≤ u max 
k 

D k,� , 

so that, for u → + ∞ : 

̂ �� ( u ) ∼ u max 
k 

D k,� . 

In the same way, for u → −∞ : 

̂ �� ( u ) ∼ u min 

k 
D k,� . 
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It can also be shown that: 

lim 

u → + ∞ ̂

 �′ 
� ( u ) = max 

k 
D k,� 

and 

lim 

u →−∞ ̂

 �′ 
� ( u ) = min 

k 
D k,� . 

Indeed, ̂ �′ 
� (u ) = 

∑ n 
k =1 

D k,� exp { uD k,� } ∑ n 
k =1 

exp { uD k,� } and: 

min 

k 
D k,� ≤ ̂ �′ 

� ( u ) = 

∑ n 
k =1 D k,� exp { uD k,� } ∑ n 

k =1 exp { uD k,� } ≤ max 
k 

D k,� . (1) 

We will use this fact later. The upper-left quadrant of Fig. 3 represents, in black, the cumulant generating function in the

exponential case �(u ) = − ln (1 − u ) , and, in grey, the estimated CGF ̂ �(u ) and the two asymptotes with slope max k D k and

min k D k . 

Then we discuss the approximation of ̂ �� 
� (y ) . We recall that: ̂ �� 

� ( y ) = sup 

u ∈ R 

{
yu − ̂ �� ( u ) 

}
. (2) 

The main problem is that the functions ̂ �� 
� involve an optimization step that can turn out to be computationally intensive,

especially when it has to be repeated for several values of y . 

Most algorithms use therefore a property of the functions to avoid the optimization step. Indeed, convex conjugacy

implies that ̂ �′ 
� (u ) = y is equivalent to u = 

̂ ��, ′ 
� 

(y ) . This means that, if for a fixed u we are able to find y := 

̂ �′ 
� (u ) , we can

identify: ̂ �� 
� ( y ) = u ̂

 �′ 
� ( u ) − ̂ �� ( u ) . 

The LLT belongs to a whole class of methods based on the discrete Legendre transform (DLT), i.e. the replacement in (2) of

the maximum over R with the maximum over a finite set { u 1 , . . . , u q } (see Step 0 in Lucet, 1997 , p. 176): ̂ �� 
� ( y ) � sup 

u ∈ { u 1 , ... ,u q } 

{
yu − ̂ �� ( u ) 

}
. 

In the following, we suppose that u i < u i +1 for all i . 

Step 1 in Lucet (1997 , p. 176), i.e. the convexification of the function 

̂ �� through the construction of the convex hull of the

point-set { (u i , ̂
 �� (u i )) , i = 1 , . . . , q } , can be skipped as the function 

̂ �� is already convex. Therefore, the function 

̂ �� can be

approximated on the interval [ u 1 , u q ] by a piecewise linear function 

˜ ̂ �� passing through the points { (u i , ̂
 �� (u i )) , i = 1 , . . . , q } .

As our aim is to identify y := 

̂ �′ 
� (u ) , we introduce the slopes of the approximated function 

˜ ̂ �� between u i and u i +1 : 

c i := 

̂ �� ( u i +1 ) − ̂ �� ( u i ) 

u i +1 − u i 

, i = 1 , . . . , q − 1 . 

At the points u i , for i = 1 , . . . , q, the function 

˜ ̂ �� is not differentiable. The upper-right quadrant of Fig. 3 represents the

points { (u i , ̂
 �(u i )) , i = 1 , . . . , 9 } , the piecewise linear approximation 

˜ ̂ � to the empirical CGF ̂ �, and the four values c 1 , u 1 ,

c 8 and u 9 . 

Now (see Step 2 in Lucet, 1997 , p. 176), for any c i −1 < y < c i : ˜ ̂ �
� 

� ( y ) = yu i − ̂ �� ( u i ) 

so that the function 

̂ �� 
� (y ) is approximated by a piecewise linear function with intercept −̂ �� (u i ) and slope u i over (c i −1 , c i ) .

When y = c i , using the definition of c i : ˜ ̂ �
� 

� ( y ) = yu i − ̂ �� ( u i ) = yu i +1 − ̂ �� ( u i +1 ) 

so that it is immaterial whether we use u i or u i +1 when computing the function. The lower-left quadrant of Fig. 3 represents

the points { (c i , ̃
 ̂ �
� 

(c i )) , i = 1 , . . . , 9 } , the piecewise linear approximation 

˜ ̂ �
� 

(in black), the true empirical Legendre transform̂ �� (in grey) and the four values y 1 := c 1 , u 1 = 

˜ ̂ �
�, ′ 
� (c 1 ) , y 8 := c 8 and u 9 = 

˜ ̂ �
�, ′ 
� (c 8 ) . 

Now we see what happens at the boundary of the function 

˜ ̂ �
� 

� (this topic does not seem to be covered in detail in Lucet,

1997 ). 

The original algorithm does not directly approximate the function 

̂ �� but rather the function 

̂ �� + χ[ u 1 ,u q ] 
. Thus, ̂ �� +

χ[ u 1 ,u q ] 
is a version of ̂ �� taking the value + ∞ outside the interval [ u 1 , u q ]. The slopes of ̂ �� at u 1 and u q are respectivelŷ �′ 

� (u 1 ) and 

̂ �′ 
� (u q ) , but are approximated by the values c 1 and c q −1 . As the function 

̂ �� is convex, ̂ �′ 
� (u q ) ≥ c q −1 and̂ �′ 

� (u 1 ) ≤ c 1 . The property of convex conjugacy implies that the function approximating ̂ �� 
� (y ) on the basis of ̂ �� + χ[ u 1 ,u q ] 

has slope u 1 over (−∞ , c 1 ) and slope u q over (c q −1 , + ∞ ) . As u 1 → −∞ and u q → + ∞ , the slopes diverge but this can
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take place quite slowly. This means that the effective domain of 
˜ ̂ �

� 

� will be R . However, we know (see Azencott, 1980 ,

Proposition 9.7) that the effective domain of ̂ �� 
� is co { D k,� , k = 1 , . . . , n } = [ min k D k,� , max k D k,� ] , the convex hull of the points

{ D k,� , k = 1 , . . . , n } . 
A solution is to suppose that, outside [ u 1 , u q ], the function 

˜ ̂ �� has slopes min k D k , � , over (−∞ , u 1 ) , and max k D k , � , over

(u q , + ∞ ) . Note that, from (1) , this does not alter the convexity of 
˜ ̂ �� , as it will remain true that min k D k,� ≤ c 1 ≤ · · · ≤ c q −1 ≤

max k D k,� . This corresponds to setting the effective domain of 
˜ ̂ �

� 

� to [min k D k , � , max k D k , � ], so that both 

˜ ̂ �
� 

� and 

̂ �� 
� will have

the same effective domain. The lower-right quadrant of Fig. 3 represents, in black, the modified version of 
˜ ̂ �

� 

as well as, in

grey, the true rate function �� (y ) = y − 1 − ln y for the exponential case. 

This can also be used as a check for the choice of u 1 and u q . Indeed, if u 1 and u q are large enough, c 1 − min k D k,� and

max k D k,� − c q −1 should be small. If this is not the case, one should move u 1 and u q to achieve smaller values of these two

quantities. 

5.3. Computation of the constrained minimum 

Once each 

̂ �� 
� has been computed, we need to obtain inf y ∈P j 

̂ �� (y ) , i.e. to optimize it under a constraint. 

In order to avoid the inequality constraints, we use the technique of Box (1966 , pp. 72-73). The replacements: {
y j �→ x j 
y � �→ x j + x 2 � 

transform the computation of inf y ∈P j 
̂ �� (y ) into an unconstrained optimization problem: 

inf 
x ∈ R m 0 

∑ 

1 ≤� ≤m 0 ,� 	 = j ̂

 �� 
� 

(
x j + x 2 � 

)
+ ̂

 �� 
j 

(
x j 
)
. 

Note that the objective of this technique is not to identify on which face of P j the infimum is achieved, but to get a

reasonably accurate value of inf y ∈P j 
̂ �� (y ) without using inequality-constrained algorithms. 

Example 8. We continue Example 7 . The replacement above provides: 

�� 

([
x 2 + x 2 1 

x 2 

])
= 2 

(
x 2 + x 2 1 

)
− ln 

(
x 2 + x 2 1 

)
+ x 2 − ln x 2 − ln 2 e 2 . 

Note that the non-negativity constraint x 2 > 0 does not pose any problem, as the function is not defined for x 2 ≤ 0. The

level curves of the function are represented in Fig. 4 . The point ˜ x = (0 , 3 / 2) ′ corresponds to ˜ y = (3 / 2 , 3 / 2) ′ in the new

coordinates. 

5.4. Asymptotic error of the rate function 

In this paper we do not provide a full statistical analysis of this method. However, it is not difficult to obtain some hints

about the behavior of the solution. The minimum inf y ∈P j 
̂ �� (y ) is reached in a point ̂  y converging to the point ̃  y at which

inf y ∈ P j �
� (y ) is reached. Therefore: ∣∣∣∣ inf 

y ∈P j ̂
 �� ( y ) − inf 

y ∈P j 
�� ( y ) 

∣∣∣∣ ≤ sup 

y ∈N ( ̃ y ) 

∣∣̂ �� ( y ) − �� ( y ) 
∣∣

where N ( ̃  y ) is a neighborhood of ̃  y contained in the interior of the effective domain of �� . Using the reasoning in Ramm

and Zaslavsky (1993 , Section 4.3), sup y ∈N ( ̃ y ) | ̂  �� (y ) − �� (y ) | is of the same order as: 

sup 

u ∈N ( ̃  u ) 

∣∣̂ �( u ) − �( u ) 
∣∣ = sup 

u ∈N ( ̃  u ) 

∣∣∣∣∣ m 0 ∑ 

� =1 ̂

 �� ( u � ) −
m 0 ∑ 

� =1 

�� ( u � ) 

∣∣∣∣∣ ≤ sup 

u ∈N ( ̃  u ) 

m 0 ∑ 

� =1 

∣∣̂ �� ( u � ) − �� ( u � ) 
∣∣. 

The behavior of ̂ �� − �� has been considered by Feuerverger (1989) (see also Ben Arous et al., 2005 ). We first note that,

provided 

̂ M � is a consistent estimator of M � , the behavior of ̂ �� − �� is similar to ̂ M � − M � : 

̂ �� − �� = ln 

(
1 + 

̂ M � − M � 

M � 

)
= 

̂ M � − M � 

M � 

+ O 

((̂ M � − M � 

)2 
)
. 

Then, we note that V ( ̂  M � (u � )) = M � (2 u � ) − M 

2 
� (u � ) so that, if M � (2 u � ) is infinite, V ( ̂  M � (u � )) will be infinite too. This justifies

what we write below. 

Let I � be the effective domain of M � . Theorem 2.3 in Feuerverger (1989) shows that, for any u � ∈ 

1 
2 · I � , 

√ 

n · ( ̂  M � − M � )

converges weakly to a Gaussian process. This means that ̂ M � − M � = O P (n −
1 
2 ) . The convergence is uniform over compact



76 R. Seri, M. Martinoli and D. Secchi et al. / Econometrics and Statistics 20 (2021) 62–86 

x1

x 2

 0.2 

 0.4 

 0.8 

 1.6 

 1.6 

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 4. Example 8 : level curves of the function �� in the new coordinate system (in thin solid lines), point ̃  x = (0 , 3 / 2) ′ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

subsets of 1 
2 · I � and a similar result applies to derivatives. Theorem 2.4 in Feuerverger (1989) extends the result to ̂ �� − �� ,

that is ̂ �� − �� = O P (n −
1 
2 ) . In Feuerverger (1989 , p. 460), the interval 1 

2 · I � is called zone of normal convergence. 

Consider now any u � ∈ I � \ ( 1 2 · I � ) . Let α := C � / u � and C � is the extreme of I � having the same sign as u � , i.e. the (left or

right) abscissa of convergence of the Laplace-Stieltjes transform. Now, under mild assumptions (see Theorem 1 in Schmidli,

1994 ), e u � D k,� has a tail that is regularly varying with index −α. This means that e u � D k,� is the domain of attraction of a stable

law with exponent α and n δ ( ̂  M � − M � ) → 0 and n δ ( ̂  �� − �� ) → 0 almost surely for any δ < δ0 = α−1 − 1 = −C � −u � 
C � 

, while

the same quantities almost surely diverge for δ > δ0 (see Feuerverger, 1989 , Theorem 2.5). The result extends to derivatives

and holds uniformly over intervals in I � . Therefore, ̂ M � − M � = o(n −δ ) and 

̂ �� − �� = o(n −δ ) for any δ < δ0 , where δ0 is

interpreted as the minimum value of max {−C � −u � 
C � 

, − 1 
2 } over the interval. 

Now, A6 above implies that the effective domain of the CGF (and of the MGF) is the whole real line. Therefore, also the

zone of normal convergence is R , and 

̂ �� − �� = O P (n −
1 
2 ) uniformly over compact subsets of R . This means that the mean

squared error of inf y ∈P j 
̂ �� (y ) , i.e. the quantity: 

MSE 

(
inf 

y ∈P j ̂
 �� ( y ) 

)
= E 

(
inf 

y ∈P j ̂
 �� ( y ) − inf 

y ∈P j 
�� ( y ) 

)2 

is expected to decrease as O (n −1 ) . The following example shows that this may take place also when A6 does not hold but

the value y corresponds to a value of u that is in the zone of normal convergence. 

Example 9. In order to prove that this is the case, we have run a small simulation study. Consider the behavior of the

mean of n exponential random variables X i , i = 1 , . . . , n, with parameter 1. We want to study the behavior of the probability

P { 1 n 

∑ n 
i =1 X i ≤ 1 

2 } for large n . In this case an exact characterization is possible. Indeed, 
∑ n 

i =1 X i is Gamma distributed with

shape n and scale 1. Therefore, the CDF of 
∑ n 

i =1 X i is γ ( n , x )/ �( n ) and: 

P 

{ 

1 

n 

n ∑ 

i =1 

X i ≤
1 

2 

} 

= 

γ
(
n, n 

2 

)
�( n ) 

. 
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Table 1 

Example 9 : bias, variance and MSE of the estimator ̂ �� ( 1 
2 
) of �� ( 1 

2 
) = ln 2 −

1 
2 

. = 0 . 1931471806 , i.e. the rate function associated with exponential random 

variables evaluated at 1 
2 
, on the basis of 10,0 0 0 replications. 

n bias variance MSE 

10 0.08326409 0.09852722 0.1054601 

20 0.03118596 0.02266419 0.02363675 

40 0.0135553 0.009384405 0.009568151 

80 0.007289302 0.004495908 0.004549042 

160 0.003312765 0.002183584 0.002194558 

320 0.001757503 0.001064703 0.001067792 

640 0.0008518621 0.0005252574 0.000525983 

 

 

 

 

 

 

 

 

 

From 8.11(iii) in Olver et al. (2010 , p. 180), γ (n, n 2 ) ∼ ( n 2 ) 
n −1 e −

n 
2 and, from 5.11.3 in Olver et al. (2010 , p. 140), �(n ) ∼

e −n n n ( 2 πn ) 
1 
2 . At last: 

P 

{ 

1 

n 

n ∑ 

i =1 

X i ≤
1 

2 

} 

∼
(

2 

πn 

) 1 
2 

e −n ( ln 2 − 1 
2 ) 

where ln 2 − 1 
2 

. = 0 . 1931471806 . Large deviations principles give the same solution, but in logarithmic form. Indeed: 

lim 

1 

n 

ln P 

{ 

1 

n 

n ∑ 

i =1 

X i ≤
1 

2 

} 

= inf 
y ∈ ( −∞ , 1 2 ] 

�� ( y ) = �� 

(
1 

2 

)
where �� (y ) = y − 1 − ln y . Now, �� ( 1 2 ) = ln 2 − 1 

2 

. = 0 . 1931471806 . In Table 1 , on the basis of 10,0 0 0 replications, we com-

pute the bias, variance and MSE of ̂ �� ( 1 2 ) when 

̂ �� is based on a sample of n exponential random variables. Apart from an

initial transient, each doubling of the sample size leads roughly to a halving of the MSE (and of the variance), thus suggest-

ing that the rate of convergence is indeed O P (n −
1 
2 ) . Indeed, the value y = 

1 
2 corresponds to ��, ′ ( 1 2 ) = −1 and this means

that u = −1 too, that is in the zone of normal convergence (−∞ , 1 2 ) . 

This explains why it is hopeless to use inf y ∈P j 
̂ �� (y ) to reconstruct the probability P { ̂  i n = j} = P { ̂  θ = θ j } . Indeed,

Theorem 1 can be restated as: 

1 

n 

ln P 

{̂ θ = θ j 

}
= − inf 

y ∈P j 
�� ( y ) + o ( 1 ) 

but more precise estimates can be obtained (see Ney, 1983; 1984; Iltis, 1995; Choirat and Seri, 2012 ) as: 

c 

n 

m 0 
2 

e 
−n inf y ∈P j �

� ( y ) ≤ P 

{̂ θ = θ j 

}
≤ C 

n 

1 
2 

e 
−n inf y ∈P j �

� ( y ) 
. 

Note that this is compatible with: 

1 

n 

ln P 

{̂ θ = θ j 

}
= − inf 

y ∈P j 
�� ( y ) + O 

(
ln n 

n 

)
. 

Replacing inf y ∈P j �
� (y ) with inf y ∈P j 

̂ �� (y ) + O P (n −
1 
2 ) yields: 

c 

n 

m 0 
2 

e 
−n inf y ∈P j ̂

 �� ( y ) + O P 
(

n 
1 
2 

)
≤ P 

{̂ θ = θ j 

}
≤ C 

n 

1 
2 

e 
−n inf y ∈P j ̂

 �� ( y ) + O P 
(

n 
1 
2 

)

that is not accurate enough. Nevertheless, the formulas can be used to approximate some useful quantities, such as ratios

of logarithms of probabilities that measure their relative rates of decrease. For i, j / ∈ M 

� : 

ln P 

{̂ θ = θ j 

}
ln P 

{̂ θ = θi 

} = 

inf y ∈P j �
� ( y ) 

inf y ∈P i �� ( y ) 

(
1 + O 

(
ln n 

n 

))
= 

inf y ∈P j ̂ �� ( y ) 

inf y ∈P i ̂ �� ( y ) 

(
1 + O P 

(
n 

− 1 
2 

))
. 

6. Application 

In this section, we consider a published model (see Bardone and Secchi, 2017 ) available on the online repository Open-

ABM at https://www.comses.net/codebases/4749/releases/1.0.0/ . This is a model of “inquisitiveness in ad hoc teams” and, as

already mentioned in the introduction, it has been selected because of (a) theoretical relevance, (b) applicability to eco-

nomics at large, and (c) computational simulation robustness. 

https://www.comses.net/codebases/4749/releases/1.0.0/
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Table 2 

Parameter notations and values. 

Parameter Values Description 

problems, N P ,0 100,300 The number of problems P at time t = 0 , at the start of the simulation. 

problem spin-off, pso 4 The maximum rate at which problems can multiply—i.e. spin-off simpler problems. 

difficulty, d ∼ N (3 , 1) The level of difficulty each problem is associated with. 

decision makers, N dm ,0 100,300 Number of agents dm at time t = 0 in the organization. 

competence, c ∼ N (1 , 1 . 5) The level of knowledge that each dm carries and that can be applied to any P in order to 

solve it. 

docility, sodm ∼ N (0 , 1) Socially-oriented decision making (or, simply, docility) that is associated to each dm . 

enquiry, e ∼ N (0 , 1) Another characteristic of the dm agent, that indicates the extent to which curiosity lead 

it to explore knowledge of team members other than those of its own team. 

inquisitiveness true/false A binomial parameter that enables or disables the use of enquiry in dm . 

range 6,9 The extent to which dm explore the environment around them to seek problems P 

and/or other dm to cooperate with. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Short theoretical background 

According to the authors of the model, inquisitiveness is a development of “docility”, a concept introduced by Herbert

A. Simon (1990, 1993) to indicate individuals that lean on information, advice, recommendations, and suggestions from 

others to make decisions. As Secchi and Bardone (2009) and Secchi (2016) show, this attitude requires some conditions in

place before it is activated. One such conditions is the presence of a community of reference—i.e. the idea that individuals

must feel like they belong to a group of likeminded others. This could be, for example, the community of mathematical

sociologists, or that of a small organization. Or, again, among the many examples, this “community” could also be the work

team one belongs to. “Docile” individuals would fit in the team in a way such that there is exchange of information and

cognition is very much distributed in an ecological, enacted, embedded sense (see Cowley and Vallée-Tourangeau, 2017 ).

The idea of inquisitiveness comes up when Bardone and Secchi (2017) attempt to break free from the limits of docility.

While it can be a good proxy in explaining the dynamics of effective teams, docility could also point at the potentially

closed loops in which some may find themselves trapped. This is due to the lack of trust in data coming from outside of

the team. When a team member connects and establishes a dialogue with people in other teams then s/he is starting an

enquiry. The idea is that such individuals focus on the problem at hand rather than on what can be achieved within the

team per se; hence they are driven by a quest for competences, skills, and help that may not be available in just one team.

As stated in Bardone and Secchi (2017 , p. 68), “[w]e use the word ‘inquisitiveness’ to refer to an agent who mostly relies on

learning by inquiry and open explorations of his or her own environment, including social channels” (italics in the original

text). 

6.2. ABM characteristics 

The model is based on the theory of docility and attempts to expand it by considering docile (i.e. team-bound), non-

docile (i.e. lone wolves), and inquisitive (i.e. docile sans frontières ) individuals. The aim of the simulation is to understand

under which circumstances the inquisitive team member adds something useful to the team. To study this aspect, the model

presents problems to individuals and teams and calculates the efficiency with which they are solved. A full description of

the model can be found in the paper by Bardone and Secchi (2017) and in the supplementary materials file, available online

at the link indicated above. The inquisitiveness ABM can be classified as a highly stochastic simulation. In the following, we

have decided to succinctly recall only those features that are relevant to our calculations. The purpose of this exercise is to

demonstrate how the Model Confidence Set technique works, not to fully introduce and discuss assumptions and results of

a computational simulation model. 

Table 2 presents key parameters and describes them shortly. The organizational space—i.e. the simulation environment—

features problems P that can take any number, but that have been set at {10 0,30 0} for this simulation. Each problem

is attributed with a difficulty level d , distributed normally at random as indicated in Table 2 . Very difficult problems

(with d larger than 95% the maximum level of d ) could, based on a random algorithm, spin-off up to 4 other (smaller)

problems at each simulation step. Also, a random number of up to 3 very difficult problems increase their difficulty
level over time at a 2% rate. 

The model also features agents, called decision makers dm ; they take two values, {10 0,30 0}. Each dm has a level

of competence —distributed normally at random (see Table 2 )—that uses to solve the problems that it is set to deal with.

When a problem is solved, there is an increase of competence of up to 0.30, when the problem is abandoned (not solved),

then there is a decrease in competence of 0.05. In addition to this, decision makers are attributed a level of docility
sodm that determines their propensity towards working with others, and a level of enquiry that is used to cooperate with

coworkers outside of one’s team (i.e. an extension of docility, as described above). This latter characteristic is enabled by a

binomial parameter inquisitiveness , when set to ‘on’ (or ‘true’). 
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Table 3 

Definition of the different configurations of parameters. 

cop inquisitiveness N P ,0 N dm ,0 range 

1 false 100 100 9 

2 false 100 100 6 

3 false 100 300 9 

4 false 100 300 6 

5 false 300 100 9 

6 false 300 100 6 

7 false 300 300 9 

8 false 300 300 6 

9 true 100 100 9 

10 true 100 100 6 

11 true 100 300 9 

12 true 100 300 6 

13 true 300 100 9 

14 true 300 100 6 

15 true 300 300 9 

16 true 300 300 6 

Note: cop : configuration of parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Rules of interaction 

The simulation works with agents moving around in the environment as they attempt to reach the target problem (se-

lected at random). Once agents connect to a problem, they also start a number of interactions with neighbouring agents,

forming ad hoc teams. All agents appear in random positions on the environment every time the simulation is ready to start.

This allows to generate a random allocation of decision makers on a so-called organizational “problem solving space”

where problems also appear and are found at random—i.e. not as a function of agent’s competence . When the simula-

tion is performed the appropriate number of times (see below), this stochasticity guarantees a variety of combinations of d ,

on the one hand, and sodm and c on the other. 

While problems do not move from their position, decision makers do so in a way that sets them to look for

problems and move towards them. If they find other problems in their way—i.e. problems that are not their main “goal”—

they stop and attempt to solve them as well. They will resume the movement after a solution or abandonment, if that

problem is still there. If not, they will look for another to deal with. 

As a decision maker deals with a problem, it establishes a link to it. While this happens, it can also establish cooperation

links with other decision makers in the radius indicated in Table 2 under parameter range . The amount of competence
that these agents share is proportional to their level of docility , such that this latter parameter gives an indication of how

much knowledge is actually shared. It is fair to assume that one team member does not transfer its knowledge completely to

the rest of the team. Some is transferred while some is kept, for various reasons, tacit and inaccessible to others. Only agents

with sodm > μsodm 

+ 0 . 75 · σsodm 

, where μsodm 

is the mean docility in the system, and σ sodm 

is its standard deviation, are

sharing significant amounts of their competence c . Contrary to the average docile, the way in which competence is used

by highly docile agents is incremental and not simply additive. That is, there is an upgrade of the knowledge gained thanks

to one’s own competence. Agents can make full use of this incremental add-on when the switch inquisitiveness is set

to true, and for agents mating docility with high levels of enquiry (see Table 2 ). 

A problem is solved and disappears from the space, when the combination of competences in the team is more than the

problem’s difficulty. When a problem is too difficult for a team, then each team member evaluates its own contribution and

may leave the problem after the effort s have been infused for 20 steps of the simulation. 

6.4. Running the simulation model 

In Table 3 we describe each one of the 16 configurations of parameters. 

The simulation model runs for 300 steps—a “step” could be thought of as an opportunity each agent has to interact

with another agent and/or with a problem—and the configurations of parameters (as per Table 3 ) are 2 × 2 × 2 × 2 = 16 .

This factorial design derives from the results shown by the proponents of this model, and has been selected to increase

variability in the outcome variable as well as introduce some novelty in the understanding of how this inquisitiveness ABM

works. To determine how many times an ABM with a highly stochastic component should be performed, we followed Secchi

and Seri (2017) and Seri and Secchi (2017) , and calculated power analysis for ANOVA for α = 0 . 01 , 1 − β = 0 . 95 and effect

size of 0.1, consistent with what found in Bardone and Secchi (2017) . As a result, the simulation was performed 200 times

per each configuration of parameters, for a total of 3200 runs. 
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Fig. 5. Trajectories z j ( θ i ) for any j = 1 , . . . , 200 and i = 1 , . . . , 16 (in solid lines) and trajectory y = (y 1 , . . . , y p ) when y h = 300 + 4 . 9 · h (in solid grey line). 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Analyzing the data 

In the following, we illustrate the technique outlined above. Since our aim is purely expository, we will consider what

happens when the h -th element y h of y is y h = 300 + 4 . 9 · h . This is motivated by the aim to establish an ideal benchmark

for the output variable. In so doing, the equation represents an optimal solution threshold that is set at 90% of all problems

solved at time 300. Fig. 5 represents the trajectories z j ( θ i ) for any j = 1 , . . . , 200 and i = 1 , . . . , 16 , as well as the trajectory

y = (y 1 , . . . , y p ) . As a distance, we choose the square of the Euclidean distance, normalized dividing it by 301 · 1,0 0 0,0 0 0,

where 301 is the length of the series and 1,0 0 0,0 0 0 is a normalizing factor. Therefore: 

d 
(
y , z j ( θi ) 

)
= 

∑ 301 
h =1 

∣∣y h − z jh ( θi ) 
∣∣2 

301 ·1 , 0 0 0 , 0 0 0 

. 

These choices respect all the assumptions. A preliminary consideration, that will be used in the following, is that the

distances in our example are bounded: indeed, the number of problems to be solved in a finite horizon is bounded and

so is the distance between the benchmark and the simulated data. This automatically implies that A2, A3, A5 and A6 are

verified. A1 is respected by construction. A4 is verified as shown by an analysis of the data (see also Fig. 7 ). 

In this case we have ̂  i n = 16 . The construction of the MCS is illustrated in Table 4 . The MCS p -values are represented

graphically in Fig. 6 . The Model Confidence Sets at 95% and at 99% are {8, 13, 16}. 

Now we consider the large deviations rate functions associated with each one of the configurations of parameters (apart

from ̂

 i n ). We have approximated each 

̂ �� on a grid of mesh 0.0 0 05 from −20 0 to 400. This means that q = 20 0 , 0 01 . The

largest value taken by c 1 − min k D k,� and max k D k,� − c q −1 over � = 1 , . . . , 16 is 0.005270962, that seems to be small enough.
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Table 4 

Order of elimination of the different configurations of parameters with means 

and p -values for y h = 300 + 4 . 9 · h . 

k e M k 
mean of e M k 

p -value of δM k 
( p H 0 , M k 

) MCS p -value ( ̂  p e M k ) 

1 10 0.87555 0.00000 0.00000 

2 2 0.84660 0.00000 0.00000 

3 7 0.63282 0.00000 0.00000 

4 15 0.62762 0.00000 0.00000 

5 11 0.45591 0.00000 0.00000 

6 3 0.37997 0.00000 0.00000 

7 9 0.31235 0.00000 0.00000 

8 1 0.30822 0.00000 0.00000 

9 6 0.26487 0.00000 0.00000 

10 14 0.25420 0.00000 0.00000 

11 12 0.14426 0.00000 0.00000 

12 4 0.10884 0.00000 0.00000 

13 5 0.05956 0.00099 0.00099 

14 8 0.04722 0.05552 0.05552 

15 13 0.04353 0.06277 0.06277 

16 16 0.02995 1.00000 1.00000 

Note: cop : configuration of parameters. 
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Fig. 6. Graphical representation of the MCS p -values ̂  p e M k as vertical black lines and of the thresholds as horizontal grey lines. 

 

 

The functions ̂ �� 
� are approximated each one on a grid of length 10,0 0 0 going from min k D k , � to max k D k , � . The final results

are illustrated in Fig. 7 . Note that the arg min of each 

̂ �� 
� coincides with D n,� . 

Table 5 reports the values of inf y ∈P j 
̂ �� (y ) , i.e. the estimated rate of decrease of the probabilities. It can be seen that the

accordance with the MCS p -values is extremely good. 
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Table 5 

Value of the rate function inf y ∈P j ̂  �� (y ) for all j 	 = ̂

 i n ordered 

from largest to smallest. 

j inf y ∈P j ̂  �� (y ) 

10 6.93468540 

2 6.14584947 

15 3.96367376 

7 3.70826307 

14 1.35071156 

6 1.35043742 

1 1.10375307 

9 0.91656526 

11 0.71091121 

3 0.54869452 

12 0.49722953 

4 0.36842910 

5 0.03924210 

8 0.01211586 

13 0.00860211 

 

 

 

 

7. Conclusions 

The standard approach in calibration is to select a unique vector of parameters based on previously available estimations

or on the basis of the wisdom-of-the-crowd . Assessing the validity of such calibration exercises is daunting as no robustness

or sensitivity checks are performed. In this paper, we consider one of these possible checks, based on the comparison of

several finite combinations of the model parameters. We propose to use a measure of distance to rank models from the
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most plausible to the least plausible. Model Confidence Sets can be employed to further restrict the number of plausible

alternatives and provide a sensitivity check for the preferred specification. We also discuss a complementary analysis based

on rate functions. The estimation of the latter allows the researcher to assign to all models, except the best one, an estimated

rate of decrease of the probability of being the correct model. This approach has comparable interpretation to the Model

Confidence Sets, and can be equivalently used to capture the distance between the chosen model and its alternatives, as our

empirical application shows. 
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Appendix 

Proof of Theorem 1. Let S be the closure of the convex hull of the support of the law of D k . 

Cramér’s Theorem in R 

d (see Corollary 6.1.6 in Dembo and Zeitouni, 2010 , p. 253) allows us to derive the first two

statements. In particular, the lower bound holds with no supplementary assumption. The upper bound requires the Cramér

condition 0 ∈ int D(�) that is verified under A2. 

For the third statement, we apply part (ii) in Lemma on page 903 of Ney (1984) . Let us start from (I). Under A2, int D(�)

is non-empty. On int D(�) the function � is differentiable (see Azencott, 1980 , Proposition 9.7, p. 49). Under A3, � is steep

(see Dembo and Zeitouni, 2010 , p. 44 for a definition). Therefore, � is essentially smooth and (I) is verified. According to

Corollary 6.1.6 in Dembo and Zeitouni (2010 , p. 253), condition (II) is verified if 0 ∈ int D(�) , that holds true under A2. As far

as (III) is concerned, we first take B ≡ int P j . From Azencott (1980 , Proposition 9.7, p. 49), int S = int D(�� ) ⊂ D(�� ) ⊂ S = S .

Therefore, the condition int ( int P j ∩ D(�� )) 	 = ∅ is equivalent to: 

int 
(
int P j ∩ D ( �� ) 

)
= int P j ∩ int D ( �� ) 

= int P j ∩ int S = int 
(
P j ∩ S 

)
	 = ∅ . 

Under A4, the closure of the convex hull of the support of the law of D k is 
∏ 

1 ≤� ≤m 0 
[ L � , U � ] . Therefore, int S = 

∏ 

1 ≤� ≤m 0 
(L � , U � )

and A4 implies int (P j ∩ S) 	 = ∅ . This implies that inf y ∈ int P j �
� (y ) is achieved at a unique point belonging to P j ∩ int D(�� ) =

P j ∩ int S (see Azencott, 1980 , Proposition 9.7, p. 49). The same is true if we take B ≡ P j , thus implying that inf y ∈ int P j �
� (y ) =

inf y ∈ P j �
� (y ) . 

For the fourth statement, we use the theorem in Ney (1984 , p. 904). The conditions are easily verified. Under A2, D(�)

contains a neighborhood of the origin. The proof that � is essentially smooth is provided above. The set B = P j is clearly

convex. The condition int (P j ∩ S) 	 = ∅ is verified above. At last, it is also clear that E D k / ∈ P j . Therefore, there is a dominat-

ing point respecting the conditions in the statement (we use here the definition in Ney, 1983 , instead of the one in Ney,

1984 ). �

Proof of Theorem 2. We briefly recall the framework of Hansen et al. (2011) . For any M ⊂ M 

0 , we need the following

assumptions: 

1 lim sup n →∞ 

P { δM 

= 1 | H 0 , M 

. } ≤ α. 

2 lim n →∞ 

P { δM 

= 1 | H A, M 

. } = 1 . 

3 lim n →∞ 

P { e M 

∈ M 

� | H A, M 

. } = 0 . 

Under these conditions, the following results hold (see Theorem 1 in Hansen et al., 2011 , p. 459): 

• lim n →∞ 

P {M 

� ⊂ ̂ M 

� 
1 −α} ≥ 1 − α, ̂ 

� � 
• lim n →∞ 

P { i ∈ M 

1 −α} = 0 i / ∈ M . 
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Now we turn to the proof in our case. Under A1 and A2 it is trivial to verify that: 

√ 

n ( D n − D ) 
D −→ N ( 0 m, 1 , �) . 

Under H 0 , M 

: A D = 0 m −1 , 1 , we have: 

√ 

n 

(
A D n − A D 

)
= 

√ 

n A D n 
D −→ N 

(
0 m −1 , 1 , A �A 

′ )
where: 

A �A 

′ = 

[
u m −1 −I m −1 

][ σ 2 
1 0 1 ,m −1 

0 m −1 , 1 �−1 

][
u 

′ 
m −1 

−I m −1 

]
= σ 2 

1 U m −1 + �−1 . 

Therefore, under the null hypothesis H 0 , M 

, the asymptotic distribution of this test is W M 

D → χ2 
m −1 

. This does not change if

the σ 2 
i 

’s are replaced by estimators. Therefore, Assumption B1 is verified. 

Under the alternative H A, M 

, i.e. when A D 	 = 0 m −1 , 1 , the quantity W M 

/n converges in probability to (A D ) ′ [ σ 2 
1 

U m −1 +
�−1 ] 

−1 (A D ) > 0 and W M 

diverges to infinity. Therefore, Assumption B2 is verified. 

Under H A, M 

, M 	⊆ M 

� and at least an element of M does not belong to M 

� . It is clear that this element will have an

average distance that is larger than the one observed in M 

� . Therefore, selecting the index j ∈ M with the largest value ̂ μ j 

will eventually lead to eliminate an element in M\M 

� , as requested by Assumption B3. �

Proof of Theorem 3. As seen above, the moment generating function M ( u ) can be approximated through 

̂ M (u ) . We will

define ̂ M � (u � ) := 

1 
n 

∑ n 
k =1 exp { u � D k,� } . We will introduce the notation 

̂ P n (·) = 

1 
n 

∑ n 
k =1 δD k 

(·) , where δx is the Dirac measure

in x , and use ̂  E n for the expectation under ̂  P n . 

Using Hess et al. (2010 , Section 3), it is simple to see that ̂ M � (u � ) converges almost surely pointwise to M � ( u � ). As ̂ M � 

and M � have in general different effective domains, it is clear that the convergence cannot be uniform. For this reason, we

will use epigrahical convergence or, for short, epi-convergence (see, e.g., Dal Maso, 1993; Rockafellar and Wets, 1998 ) that is

especially suitable to analyse the convergence of infima and minimizers of sequences of functions, especially when they have

different effective domains (see, e.g., Pennanen and Koivu, 2005; Seri and Choirat, 2013; Hess et al., 2014 ). Using Theorem

3.1 in Hess and Seri (2019) (or Theorem 2.3 in Choirat et al., 2003 ), it is trivial to verify that the approximation is not

only pointwise but also epigraphically convergent, i.e. epi − lim n 
̂ M � (·) = M � (·) . Now, the very definition of epi-convergence

and the strict positivity of ̂ M � (·) imply that epi − lim n ̂
 �� (·) = �� (·) where ̂ �� (·) := ln ̂

 M � (·) . It is in general false that sums

of epi-convergent functions are epi-convergent, but exploiting Proposition 6.25 in Dal Maso (1993 , p. 64) it is easy to see

that epi − lim n ̂
 �(u ) = �(u ) where �(u ) := 

∑ m 0 
� =1 

�� (u � ) and 

̂ �(u ) := 

∑ m 0 
� =1 ̂

 �� (u � ) . Using the continuity of the Fenchel

transform with respect to epi-convergence (Wijsman’ s theorem, see Theorem 11.34 in Rockafellar and Wets, 1998 , p. 500),

this shows that also �� ( · ) has an epigraphically convergent approximation, in the form: ̂ �� ( y ) := sup 

u ∈ R m 0 

[
u 

′ y − ̂ �( u ) 
]
. 

This can at last be written as ̂ �� (y ) = 

∑ m 0 
� =1 ̂

 �� 
� (y � ) where ̂ �� 

� (y � ) := sup u � ∈ R { y � u � − ̂ �� (u � ) } . 
Now, convergence of the minima holds true only under an equi-coercivity condition (see Dal Maso, 1993 , Chapter 7). To

avoid messier assumptions, we assume that S = 

∏ 

1 ≤� ≤m 0 
[ L � , U � ] is compact (see A5; this assumption seems to be common

in this literature, see Duffield et al., 1995; Duffy and Metcalfe, 2005a ). From Azencott (1980 , Proposition 9.7) we know that

D(�� ) ⊂ S . We also know, applying the same result to the function 

̂ �� , that D( ̂  �� ) ⊂ co { D k , 1 ≤ k ≤ n } ⊂ S . Therefore: 

inf 
y ∈P j ∩S ̂

 �� (y ) = inf 
y ∈P j ̂

 �� (y ) . 

Now we characterize inf y ∈P j 
̂ �� (y ) in terms of its dominating point. As ̂ � is everywhere finite for finite n , D( ̂  �) = R 

m 0 

contains a neighborhood of the origin. For the same reason 

̂ � is essentially smooth. The set B = P j is convex. The condition

int (P j ∩ co { D k , 1 ≤ k ≤ n } ) 	 = ∅ is justified for large n . At last, it is also clear that ̂  E n D k / ∈ P j for large enough n . �
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Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.ecosta.2020.01.
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The supplemental material contains:

• Data.csv: a csv file containing the data used for the application in Section 6 of the paper;

• Plot.R: an R file reading and plotting the data;

• MCS.R: an R file reading the data and computing the Model Confidence Set;

• LDP.R: an R file reading the data and computing the rate functions appearing in Large Devia-

tions results.
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