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Asymptotic Properties of the Plug-in Estimator of
the Discrete Entropy Under Dependence

Raffaello Seri and Mario Martinoli

Abstract— We consider the estimation of the entropy of a
discretely-supported time series through a plug-in estimator.
We provide a correction of the bias and we study the asymptotic
properties of the estimator. We show that the widely-used
correction proposed by Roulston (1999) is incorrect as it does
not remove the O

�
N −1

�
part of the bias while ours does.

We provide the asymptotic distribution and we show that it
differs when the values taken by the marginal distribution of the
process are equiprobable (a situation that we call degeneracy)
and when they are not. We introduce estimators of the bias,
the variance and the distribution under degeneracy and we study
the estimation error. Finally, we propose a goodness-of-fit test
based on entropy and give two motivations for it. The theoretical
results are supported by specific numerical examples.

Index Terms— Discrete entropy, time series, plug-in estimator,
bias correction, degenarate distribution, goodness-of-fit test.

I. INTRODUCTION

S INCE the seminal works of [107] and [67], the entropy
plays a central role in information and communication

theory. The Shannon entropy and the Kullback–Leibler diver-
gence can be observed from several perspectives but, overall,
they can be classified as uncertainty measures.

The Shannon entropy has been applied to many fields of
information theory, including the estimation of the entropy rate
of information sources (see [59], [87], [88]), the estimation
of functionals of probability distributions (see [6], [55]),
the analysis of texts and symbol sequences (see [10], [65],
[103]) and machine learning research (see, e.g., [111]). Other
important branches of application of Shannon entropy are
psychology (see [72], [73]), physics (see [2], [18], [38], [121]),
and economics and finance (see [68], [76], [126]).

It is therefore natural that many efforts have focused on its
estimation. Many papers have been devoted to the estimation
of the entropy for observations with a continuous distribution
function or with a discrete one, as well as for independent and
identically distributed (iid) observations or for dependent data.

Manuscript received November 26, 2019; revised April 5, 2021; accepted
August 5, 2021. Date of publication September 1, 2021; date of current version
November 22, 2021. The work of Mario Martinoli was supported by the
PRIN Grant 2017 “How Good Is Your Model? Empirical Evaluation and
Validation of Quantitative Models in Economics.” (Corresponding author:
Mario Martinoli.)

Raffaello Seri is with DiECO, Università degli Studi dell’Insubria,
21100 Varese, Italy.

Mario Martinoli is with the Institute of Economics and EMbeDS,
Sant’Anna School of Advanced Studies, 56127 Pisa, Italy (e-mail:
m.martinoli@santannapisa.it).

Communicated by E. Gassiat, Associate Editor for Probability and Statistics.
Digital Object Identifier 10.1109/TIT.2021.3109307

The main contributions related to the case of data with con-
tinuous distributions exploit nonparametric estimation meth-
ods, such as kernel or nearest-neighbor estimators. Among
these, we quote several papers dealing with iid data (see [1],
[15], [45], [71]), some of which investigate the behavior of
the bias, and a few works that tackle the case of time series
(see, for instance, [37] and [52]). The most important results
achieved in the literature are reviewed by [13].

However, the case that attracted most attention, and that we
will consider in this paper, is the one of the entropy of data
coming from discretely-supported distributions, a situation that
applies both to genuinely discrete data and to discretized (also
called symbolized) ones. In the iid case, the most natural
estimator is the so-called maximum likelihood or plug-in
estimator, obtained replacing the discrete probability with its
maximum likelihood estimator. Two facts about it were early
recognized in a 1954 unpublished report by Miller and Madow.
As witnessed by a summary of this paper in [72, p. 45], the
authors showed that the asymptotic behavior of the estimated
entropy depends on whether all values assumed by the discrete
process have the same probability or not. In the second
case, the statistic is asymptotically normally distributed, while
in the first case it is asymptotically distributed as a chi-square.
The second discovery (see also [20], [77], [101]) is that the
estimator is biased in finite samples.

The case of iid discrete observations has further been
explored by several authors (see [6], [7], [40], [47], [87], [89],
[124], [125]). This has led to the availability of a large number
of alternatives to the plug-in estimator, like the Grassberger
( [38], [40]), the best upper bound ( [87]), the unseen
([116]) as well as several polynomial approximation estimators
( [54], [55], [119]). Many of these papers provided methods
to overcome the bias. We refer to [54], [55] for a complete
review of the most recent contributions in this field, and to
[54, Sec. V] for an extensive simulation study comparing the
performance of several estimators.

The extension of the iid case to the one of dependent
data has proceeded along two directions, both of them
associated with different estimation strategies. To clarify
what we mean, we consider a stationary stochastic process
{. . . , xt−1, xt, xt+1, . . . } and we use the informal notation
p (·) (p (· |· )) to denote the (conditional) probability mass or
density associated with its argument. The symbol E denotes
expectation.

The first direction is associated with the entropy rate
appearing in the Shannon–McMillan–Breiman theorem. This
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result states that, when N → ∞, minus the nor-
malized logarithm of the density of the time series
{x1, . . . , xN}, i.e. − 1

N ln p (x1, . . . , xN ), converges to the
entropy rate −E ln p (xt |. . . , xt−1 ), defined as minus the
expected value of the logarithm of the conditional probability
of xt given its past {. . . , xt−1} (see, e.g., [3]). The relevance
of this result to information theory lies in the asymptotic
equipartition property (see [3] for some references). Esti-
mation in this direction has been thoroughly investigated in
the literature, see [32], [39], [58], [64], [65]. In dynamical
systems, a similar quantity to the entropy rate appears in
the metric entropy defined by Kolmogorov and Sinai (see,
e.g., [24]), whose estimation has been considered in [41],
[103], [110].

The second direction is connected with quantities appear-
ing in several measures or tests of statistical dependence,
both in time series and dynamical systems, like in [29],
[30], [57], [82]–[85], [94], [113], [118]. In this case, time
series data are used to estimate the same formula of the
iid case, −E ln p (xt), where the probability p is defined by
the marginal distribution of the process (see, e.g., [102]).
This second approach can be extended to compute the block
entropy −E ln p (xt−k+1, . . . , xt−1, xt), i.e. the entropy of the
block {xt−k, . . . , xt−1, xt}. By using the properties of condi-
tional probabilities, one can then compute the conditional or
differential entropy −E ln p (xt |xt−k, . . . , xt−1 ), the entropy
of xt conditionally on its recent past {xt−k, . . . , xt−1}, as
a difference of block entropies. This fact seems to draw
together the two directions as, letting k diverge, one recovers
the entropy rate of the Shannon–McMillan–Breiman theorem.
However, the two directions are generally associated with
different estimation strategies and problems. Indeed, estimat-
ing the differential entropy −E ln p (xt |xt−k, . . . , xt−1 ) as an
approximation of the entropy rate −E ln p (xt |. . . , xt−1 ) may
introduce a severe bias (see [103, p. 416] and [32, p. 75]),
unless the process is a Markov chain (see [54, pp. 2859-2860]).
However, even bounding ourselves to the block entropy with
small k or k = 1, the estimation efforts in this direction
have been limited. Indeed, most articles study the plug-in
estimator or variants thereof and apply to the dependent case
formulas derived for iid observations without modification
(see [48, p. 102], [103, p. 416] and [102]). Among these,
we highlight the paper of [102], who evaluates the bias and
the asymptotic distribution of the entropy. However, as we will
show below, the bias formulas proposed by [102], and thus his
bias correction, are not correct, as are his asymptotic variance
formulas.

In this paper we consider the entropy appearing in the sec-
ond direction outlined above. We analyze in detail the plug-in
entropy estimator HN obtained replacing the probabilities
of each value assumed by the process with their natural
estimators based on a sequence of dependent observations of
length N . Our aim is to fill some gaps in the literature, mainly
concerning its consistency and asymptotic distribution, and to
correct some incorrect results.

First of all, we show that, under stationarity, the observed
entropy HN converges almost surely to a limit H∞ which
is a random variable. Under stationary ergodicity, this limit

H∞ becomes a fixed value. We characterize the bias of HN

showing that it disappears asymptotically and, if the process
is a fortiori α-mixing with

∑∞
n=1 α (n) < ∞, HN has bias

O
(
N−1

)
. We then propose a bias correction and we compare

it with the one proposed by [102]. The evidence shows that the
correction in [102] does not remove the O

(
N−1

)
part of the

bias while ours does. Despite the wrong correction proposed
by [102], during the last twenty years many authors have
considered his formulas, fostering the propagation of the error
in information theory (see [44], [66], [86], [90]–[92], [122]),
neurosciences (see [19], [51], [63], [70], [95]), physiology
(see [123]), engineering (see [56]) and organizational research
(see [17]).

Subsequently, we provide asymptotic distributional results
under α-mixing. We show that in general the statistic, when
centered and scaled by

√
N , has a normal asymptotic distrib-

ution but, under a condition that we call degeneracy, it must
be scaled by N and it converges in distribution to a weighted
sum of chi-square random variables. The name “degeneracy”
is due both to the fact that the variance of the asymptotic
normal distribution is null (or degenerate) and to the fact that
the entropy behaves like a degenerate V -statistic (see [105,
Chapters 5 and 6]). We then propose some estimators of the
bias of the entropy. One of them exploits an autocorrelation-
consistent covariance matrix estimator (see [80] and [5]).
The second one applies when the process is a Markov chain
and features the fundamental matrix of the chain (see, for
instance, [61] and [104]). Finally, we give a result on the
average error induced by the estimation of bias. Our outcomes
demonstrate that the Markov bias correction is more precise
than the estimator based on the autocorrelation-consistent
covariance matrix estimator, and the bias correction slightly
increases the variance of the estimator, but the mean squared
error is generally improved by the corrections. In the non-
degenerate case, we also address estimation of the variance
of the entropy. Under degeneracy, the asymptotic distribution
depends on some weights that can be estimated. However,
this impacts directly on the significance level of tests. Indeed,
we show that the Kolmogorov distance between the exact
asymptotic distribution and the estimated one is OP

(
N−1/2

)
.

At last, we provide an application of the entropy to a
goodness-of-fit test for the marginal distribution of the process
and we report the results of a simulation study showing the
finite-sample properties of the test.

Throughout the paper, we apply our results to
two different examples: a dichotomized first-order
autoregressive process and the Gilbert–Shannon–Reeds model
(see, e.g., [12]).

The article is organized as follows. Section II introduces
some notations that will be used throughout the paper.
Section III investigates the limiting behavior of the entropy and
proposes formulas for its bias. Section IV introduces the esti-
mators of bias, variance and distribution under degeneracy, and
provides results on the errors in the estimation. Section V pro-
pose a test of goodness-of-fit based on the entropy. Section VI
wraps up the main conclusions. Section VII contains the
proofs of the results. The Appendix contains an application
to stationary non-ergodic data.
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II. NOTATION

We introduce some notation.
We write N for the positive integers, N0 for the non-negative

integers and R for the real numbers. We follow the convention
that 0 ln 0 = 0.

For sequences, when n → ∞, we use an � bn when an =
bn · (1 + o (1)), an � bn when bn/C ≤ an ≤ Cbn for ∞ >
C > 0 and n large enough, an � bn when an = o (bn),
an � bn when an ≤ Cbn (with an and bn non-negative) for
∞ > C > 0 and n large enough. We use the same notation
when the limit is with respect to a continuous variable.

We use capital bold letters, such as A, to denote matrices
and lowercase bold letters, such as a, to denote vectors.
Let ι be a vector of ones, U a square matrix of ones, I
the identity matrix, 0 a matrix or a vector of zeros. If a
confusion is possible, the dimension will be indicated through
an index, as in ιN . For a vector a, let ā be the vector
containing the reciprocals of the elements of a. Let dg (a)
be a diagonal matrix having a on its diagonal. Let tr (A)
be the trace of A, i.e. the sum of the diagonal elements
of a square matrix A. For a suitable matrix A, A� is its
transpose, A� its conjugate transpose, A−1 its inverse and A+

its Moore–Penrose pseudoinverse. The element-wise power
of a vector or a matrix is denoted by A�b (so that ā =
a�(−1)), while Ab is the usual power obtained multiplying
A by itself b times. The element of A in position (i, j) is
denoted as Aij or [A]ij ; the matrix with generic element aij is
denoted [aij ].

The notation 	·	p indicates the Schatten norm, that is

	A	p := [
∑

i (si (A))p]
1
p where si is the i-th singular value

of A, i.e. the square root of the i-th non-negative eigenvalue
of A�A. We will use mainly the nuclear norm 	·	1 and
the Frobenius norm 	·	2, also written 	·	F . When applied
to a vector a, the notation 	·	Lp denotes the vector norm

defined as 	a	Lp := (
∑

i |ai|p)
1
p ; when applied to a matrix

A, it denotes the matrix norm induced by the vector norm as
	A	Lp := supx �=0

�Ax�Lp

�x�Lp
.

We use ∼, as in X ∼ N (
μ, σ2

)
, to denote that X is

distributed as the random variable on the right-hand side. The
notations →P and →D denote convergence in probability and
in distribution respectively. For ∼ and →D we sometimes
write, with a small abuse of notation, that Xn →D X where
X is a random variable with a given distribution. The symbols
E and V respectively denote the expectation and the variance
of a random variable or vector.

Let (Ω,A, P) be a probability space and T : Ω → Ω a
measurable transformation. T is called measure-preserving if
P (TA) = P (A) for any A ∈ A. Let us define a trajectory
of a stochastic process as x (ω) = {. . . , x1 (ω) , x2 (ω) , . . . }
(note that in the following we will systematically neglect the
argument ω). We can identify T with the shift transformation,
i.e. as the function such that xt (Tω) = xt+1 (ω), so that
x (Tω) = {. . . , x2 (ω) , x3 (ω) , . . . }. In this case, a stochas-
tic process {. . . , x1, x2, . . . } is stationary if the sequences
{. . . , x1, x2, . . . } and {. . . , xk+1, xk+2, . . . } have the same
distributions, for every k > 0. The set A is said to be invariant
under T if P (A�TA) = 0. The set of invariant sets under T

is a σ-algebra denoted I. T is called ergodic if P (A) = 0 or
P (A) = 1 for any A ∈ I. A process is ergodic iff:

lim
K→∞

1
K

K−1∑
k=1

P {{. . . , xk+1, . . . } ∈ B, {. . . , x1, . . . } ∈ A}

= P {{. . . , x1, . . . } ∈ B}P {{. . . , x1, . . . } ∈ A}
for any measurable set A and B. For two sub-σ-fields G and H
of A, we define the strong and the uniform mixing coefficients
as:

α (G,H) = sup
G∈G,H∈H

|P (G ∩ H) − P (G) P (H)| ,

ϕ (G,H) = sup
G∈G,H∈H

|P (H |G ) − P (H)| .

Let us define F t
−∞ = σ (. . . , xt−1, xt) and F∞

t+m =
σ (xt+m, xt+m+1, . . . ) the σ-algebras generated by the ran-
dom variables inside the parentheses. We define:

α (m) = sup
t

α
(F t

−∞,F∞
t+m

)
,

ϕ (m) = sup
t

ϕ
(F t

−∞,F∞
t+m

)
.

We say that the process is strong or α-mixing if
limm→∞ α (m) = 0 and uniform or ϕ-mixing if
limm→∞ ϕ (m) = 0.

III. MAIN RESULTS

Consider a stochastic process {x1, . . . } with finite support,
i.e. such that each xi ∈ {1, 2, . . . , B}. This process can be
genuinely discrete or can come from the symbolization of a
stochastic process {x̃1, . . . } whose support is divided into B
intervals. The choice of a finite and bounded B may seem
restrictive at first, as several recent papers consider in detail
what happens when B is infinite or diverges with N (see [6],
[54], [55], [119]). However, this assumption will turn out to
be natural in Section IV as the estimation procedures we use
require finite B and, moreover, it allows us to concentrate on
the main aim of this paper, ruling out several interesting but
unexpected behaviors (see, in particular, [6]).

We suppose that the process {x1, . . . } is stationary. Note
that under this assumption the probability on {1, 2, . . . , B}N

can be extended to a probability on {1, 2, . . . , B}Z and this
will allow us to refer interchangeably to one-sided {x1, . . . }
or two-sided processes {. . . , x1, . . . }. The hypothesis of sta-
tionarity can be generalized using the concept of asymptotic
mean stationarity (see [21], [42], [43], [49]), but we will not
pursue this improvement here.

The results we are going to prove are stated for the esti-
mation of the entropy computed on the marginal distribution
of the process. They can be easily adapted to the computation
of the block entropy for blocks of length k. Indeed, let us
consider a process {y1, . . . }. We take a process {x1, . . . }
where we identify xi := (yi, . . . yi+k−1). If yi ∈ {1, 2, . . . , b},
xi ∈ {1, 2, . . . , b}k and it is easy to reorder the elements
of this set in such a way that xi ∈ {1, 2, . . . , B} where
B = bk. If {y1, . . . } is stationary, ergodic and mixing with
mixing coefficients α (m) (ϕ (m)) for m ∈ N, then the
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process {x1, . . . } is respectively stationary, ergodic and mix-
ing with mixing coefficients α (m − k + 1) (ϕ (m − k + 1))
for m ∈ N. However, this estimator of the block entropy may
suffer from some drawbacks: as the number of cells whose
probability is small increases with k, the bias tends to increase
and the bias corrections are less reliable.

The proportions of values equal to i is:

qi =
ni

N
=

∑N
j=1 1 {xj = i}

N
.

The observed entropy is therefore:

HN = −
B∑

i=1

ni

N
ln

ni

N
= −

B∑
i=1

qi ln qi.

With respect to the case in which the observations are from
a sequence of iid random variables, the asymptotic theory is
quite different.

We will need the following quantities, characterizing the
distribution of the process:

pi = P {x1 = i} i = 1, . . . , B

p
(h)
ij = P {x1 = i, xh+1 = j} i, j = 1, . . . , B, h ∈ N0.

It is clear that p
(0)
ii ≡ pi and that p

(0)
ij ≡ 0 if i �= j.

Moreover, we will use the notation p
(h)
i ≡ p

(h)
ii . Stationarity

allows us to extend p
(h)
ij to h ∈ Z, in which case p

(h)
ij =

p
(−h)
ji . We also define the vector of dichotomic variables

xj = (1 {xj = 1} , 1 {xj = 2} , . . . , 1 {xj = B})�.
In the following, we outline two examples that will be

used throughout the paper to show and support our main
results. The two examples concern a dichotomized first-order
autoregressive process and the Gilbert–Shannon–Reed model
whose behavior follows a Markov chain.

Example 1 (Dichotomized AR(1) Process): Let us consider
a process {x̃1, . . . } defined by the first-order autoregressive
(i.e. AR (1)) equation:

x̃i = α · x̃i−1 + εi i = 2, . . .

where {ε1, . . . } is an iid process of normally distributed
random variables with mean 0 and variance 1−α2. The initial
value has the distribution x̃1 ∼ N (0, 1) that guarantees that
the process is strictly stationary. A symbolized process requires
the choice of a partition of the real line {I1, . . . , IB}. Then:

p
(h)
i =P {x1 = i, xh+1 = i} = P {x̃1 ∈ Ii, x̃h+1 ∈ Ii}

=P

{
N
([

0
0

]
,

[
1 αh

αh 1

])
∈ Ii × Ii

}
.

Here we consider only a dichotomized process, i.e. a sym-
bolized process with B = 2, I1 = (−∞, 0) and I2 =
[0, +∞). This process retains only the signs of the original
process, i.e.:

xi = 1 + 1 {x̃i ≥ 0} i ∈ N.

It is clear that:

p1 = P {xi = 1} = P {x̃i ≥ 0} = 1/2

p2 = 1 − p1 = 1/2.

As to the probabilities of couples separated by h time
periods, we first derive the expressions for x̃i as a function
of x̃i−h:

x̃i = αh · x̃i−h +
h−1∑
j=0

αj · εi−j

or:

x̃h+1 = αh · x̃1 +
h∑

�=1

αh−� · ε�+1.

This implies that Cov (x̃1, x̃h+1) = αh · V (x̃1) =
(αhσ2)/(1−α2) and the correlation is αh. From [114, p. 189],
we have:

p
(h)
22 = P {x1 = 2, xh+1 = 2} = P {x̃1 ≥ 0, x̃h+1 ≥ 0}

= P

{
N
([

0
0

]
,

[
1 αh

αh 1

])
∈ R2

+

}
= πh = 1/4 + 1/2π arcsin

(
αh
)

p
(h)
11 = πh

p
(h)
12 = p

(h)
21 = 1/2 − πh.

It is clear that πh → 1/4, |πh − 1/4| ≤ αh
/4 and, for large

h, πh ∼ 1/4 + 1/2παh.
Example 2 (Gilbert–Shannon–Reeds (GSR) Model): We

consider the Gilbert–Shannon–Reeds model of shuffles (see,
e.g., [12]), but in the following we only need a short descrip-
tion. Let B the number of cards in a deck. First, a number C is
chosen from {0, 1, . . . , B} according to the binomial distribu-
tion with probabilities

(
B
C

)
/ (2B). Second, the first C cards are

held in the left hand and the remaining B−C cards in the right.
Third, cards are dropped from a given hand with probability
proportional to packet size. Thus, the first card is dropped
from the left hand packet with probability C/B and from the
right hand packet with probability (B − C) /B. If the first
card is dropped from the left packet, the next card is dropped
from the left packet with probability (C − 1) / (B − 1) and
from the right packet with probability (B − C) / (B − 1). The
process continues until there is no card left. This describes
a Markov chain whose state space is the set of all possible
permutations of the deck of cards, but we will not focus
on this process. We will instead consider what happens to
a single randomly selected card when the deck is repeatedly
shuffled. Even if there is no guarantee that aggregating a
Markov chain will result in a Markov chain of the same order
(see, e.g., [28]), it is easy to convince oneself that what matters
for the position of the card after a shuffle is the position of that
same card before the shuffle, the positions of the other cards
being irrelevant. The transition matrix of this Markov chain
is called position matrix in [23]. From Lemma 2.1 in [23] or
Proposition 2.1 in [9], the probability of going from state i to
state j is:

πij =

⎧⎪⎨⎪⎩
2−j + 2j−1−B if i = j

2j−1−B
(
B−j
i−j

)
if i > j

2−j
(
j−1
i−1

)
if j > i
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The position matrices P = [πij ] are therefore given by the
following formulas, valid respectively for B = 2, 3, 4, 5, 6:

P = 4−1

[
3 1
1 3

]

P = 8−1

⎡⎣ 5 2 1
2 4 2
1 2 5

⎤⎦

P = 16−1

⎡⎢⎢⎣
9 4 2 1
3 6 4 3
3 4 6 3
1 2 4 9

⎤⎥⎥⎦

P = 32−1

⎡⎢⎢⎢⎢⎣
17 8 4 2 1
4 10 8 6 4
6 6 8 6 6
4 6 8 10 4
1 2 4 8 17

⎤⎥⎥⎥⎥⎦

P = 64−1

⎡⎢⎢⎢⎢⎢⎢⎣
33 16 8 4 2 1
5 18 16 12 8 5
10 8 12 12 12 10
10 12 12 12 8 10
5 8 12 16 18 5
1 2 4 8 16 33

⎤⎥⎥⎥⎥⎥⎥⎦ .

The stationary probability of these Markov chains is a
uniform distribution on the states, so that pi = B−1 for
i = 1, . . . , B. The probabilities p

(h)
ij can then be easily

obtained multiplying the position matrices and the stationary
probability.

A. Limiting Behavior

A trivial application of the Birkhoff Ergodic Theorem and
of, e.g., Corollary 6.3.1 in [96, p. 174] yields almost sure
convergence of HN to a limiting random variable measurable
with respect to the invariant σ-algebra I.

Proposition 3: Under stationarity:

lim
N→∞

HN =H∞

= −
B∑

i=1

P {x1 = i |I } ln P {x1 = i |I } P − as

where H∞ is an invariant random variable. Under stationary
ergodicity, H∞ = −∑B

i=1 pi ln pi is a constant.

B. Bias

The nonlinearity introduced by the logarithm implies that
HN will not be an unbiased estimator of H∞. Moreover, it is
well known that the bias is always negative (see, e.g., [87,
Proposition 1] and note that the proof does not depend on the
iid assumption). The next result characterizes the bias of HN .

Proposition 4: If the process {x1, . . . } is stationary ergodic:

E [HN ]−H∞ = −B − 1
2N

− 1
N

B∑
i=1

∑N−1
h=1

(
p
(h)
i − p2

i

)
pi

+o (1)

where −B−1
2N − 1

N

∑B
i=1

�N−1
h=1

�
p
(h)
i −p2

i

�

pi
≤ 0 and the

right-hand side is o (1). If the process {x1, . . . } is α-mixing
with

∑∞
n=1 α (n) < ∞, then:

E [HN ] − H∞ = − B − 1
2N

− 1
N

B∑
i=1

∑∞
h=1

(
p
(h)
i − p2

i

)
pi

+ o
(
N−1

)
where the right-hand side is indeed O

(
N−1

)
.

Remark 5: (i) Positive values of the covariance
Cov (1 {xj = i} , 1 {x� = i}) = p

(j−�)
i − p2

i , for i = 1, . . . , B
and j, � ∈ N, for most values of the indices are sometimes
used as an indicator of persistence of the stochastic process
{x1, . . . }, often defined as the tendency to assume in a time
period values that are near to the ones of previous time
periods. Persistent stochastic processes will usually have∑B

i=1

�N−1
j=1

�
p
(j)
i −p2

i

�

piN
> 0. This implies not only that the

observed entropy is systematically biased downwards from
the true entropy, but that this effect is stronger for the case
of stochastic processes with persistence. Antipersistence can
instead reduce the bias.
(ii) Under ergodic stationarity, we have:

1
N − 1

N−1∑
h=1

(
p
(h)
i − p2

i

)
→ 0

but this term is not necessarily O
(
N−1

)
and so isn’t the bias.

(iii) In the rest of the paper, and especially in Section IV, we
will use the following definition, valid under α-mixing with∑∞

n=1 α (n) < ∞:

bias (HN ) := −B − 1
2N

− 1
N

B∑
i=1

∑∞
h=1

(
p
(h)
i − p2

i

)
pi

.

The reason is that most results on which we will rely for
the estimation of bias (HN ) require conditions stronger than∑∞

n=1 α (n) < ∞ (see, e.g., [5]).
(iv) It is interesting to see what this result implies for the sta-
tionary not necessarily ergodic case. For a stationary ergodic
process, the time average and the ensemble average coincide
and the bias correction is quite simple to understand and, as we
will see below, implement. However, in the general case of
a stationary process, the limit of HN is the time average
H∞, that is an I-measurable random variable, and a bias
correction for the time average should be an I-measurable
random variable too. Nevertheless, in most applications one
observes a single time series. It is well known that a stationary
process can be written as a mixing of ergodic processes with
respect to a measure that, e.g., is called contingency law
in [115]. This means that each single realization of a stationary
process is obtained, first, extracting a random value from the
contingency law and, second, extracting a realization from the
ergodic process associated with the previous random value.
This implies that each time series is extracted from an ergodic
process whose properties can be inferred using the Ergodic
Theorem, but nothing can be inferred about the contingency
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law. This point of view is made very clear in [74, p. 202] with
reference to prediction. As a result, the bias correction applies
to the entropy computed on the single trajectory, that can be
supposed to be extracted from an ergodic law.

Example 6 (Dichotomized AR (1) Process - Example 1
Continued): The process {x1, . . . } is ergodic and mixing with
α (h) ≤ 1/2π arcsin

(
αh
) ≤ αh

/2π. Therefore, we have:

E [HN ] =H∞ − 1
2N

− 2
π

(∑N−1
j=1

(
1 − j

N

)
arcsin

(
αj
)

N

)
+ o

(
N−1

)
=H∞ − 1

2N
− 2

πN

⎛⎝ ∞∑
j=1

arcsin
(
αj
)⎞⎠+ o

(
N−1

)
.

In Figure 1 we show the performance of the bias correction.
For the moment, as we have not yet considered estimation,
we correct H∞ to approximate E [HN ].1 The trajectories of
HN are represented by the grey jigsaw lines that oscillate
around the dark grey line representing EHN . They converge
from below towards the fixed limiting value H∞. In finite
samples, HN is a badly biased estimator of H∞. We show
two corrections to H∞, i.e. in black dotted line H∞ − 1/2N,
the correction for the iid case (the one proposed in [102] for
the time-series case), and in black dashed line H∞ − 1/2N −
2/πN

(∑∞
j=1 arcsin

(
αj
))

, our correction. It is clear that our

correction is much better than the one in [102].2 On the right
plot, we display the empirical cumulative distribution function
(cdf) of HN with N = 25 (black dashed line), N = 50 (black
dotted line), N = 100 (black dash-dot line), N = 200 (black
solid line). This shows that in the ergodic case HN converges
(almost surely) to H∞.

C. Central Limit Theorem

The following proposition provides an asymptotic distribu-
tional result.

Proposition 7: If the process {x1, . . . } is α-mixing with∑∞
n=1 α (n) < ∞, we have:

√
N (HN − H∞) →D N (

0, σ2
)

where

σ2 :=
B∑

i=1

pi ln2 pi −
(

B∑
i=1

pi ln pi

)2

+ 2
B∑

i=1

B∑
i′=1

∞∑
h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
ln pi ln pi′ .

Provided σ2 �= 0 and ϕ (n) ≤ κ (n + 1)−2 for any n:∥∥∥F√
N(HN−H∞)/σ − Φ

∥∥∥
∞

= O
(
N−1/2

)
.

1In general, the bias correction is applied to HN in order to reduce
its distance with respect to the value H∞ that is being estimated (see
Example 16).

2Our correction to the bias looks even better because in this example the
o
�
N−1

�
term in the equation above can be shown to be O

�
N−2

�
. This

easily derives from the development of Lemma 30: using the fact that the
random variables qi are symmetric and have odd moments equal to 0, the first
non-null term after the bias is − 4

3
E (q1 − 1/2)4 = O

�
N−2

�
.

Fig. 1. Ensemble and time averages of the entropy in the ergodic
(dichotomized AR (1)) case: on the left plot, 50 trajectories of HN as a
function of N (light grey jigsaw lines), H∞ (dark grey horizontal line),
EHN (dark grey curved line), H∞ − 1/2N (black dotted line), H∞ −
1/2N − 2/πN

��∞
j=1 arcsin

�
αj
��

(black dashed line), vertical lines at

N ∈ {25, 50, 100, 200} (respectively black dashed, dotted, dash-dot, solid
lines); on the right plot, empirical cdf of HN with N = 25 (black dashed
line), N = 50 (black dotted line), N = 100 (black dash-dot line), N = 200
(black solid line).

Remark 8: (i) When pi = B−1 for any i, the asymptotic
variance annihilates. For the iid case, this was remarked by
Miller and Madow in 1954 (see [72, p. 45]) but was later
overlooked by [11] (see [47, pp. 326-327]). Here we show that
the same result extends to the case in which the observations
are dependent. The asymptotic distribution in this case is dealt
with in Section III-D.
(ii) The Berry–Esséen bound involves a condition on the
uniform mixing coefficients because Berry–Esséen bounds
for the strong mixing case are less satisfactory (see [98,
Theorem 2, Remark 2, Application 2]).

Example 9 (Dichotomized AR (1) process - Examples 1, 6
continued): In this case we have σ2 = 0.

Combining together Propositions 4 and 7, we obtain the
following trivial result.

Corollary 10: If the process is α-mixing with∑∞
n=1 α (n) < ∞, we have:

√
N (HN − bias (HN ) − H∞) →D N (

0, σ2
)
.

D. Asymptotic Distribution Under Degeneracy

Now we turn to the properties when pi = B−1 for any i.
In the following proposition we need the definition of a matrix
Ω. In Section IV we will show that this is a modification of
a covariance matrix Σ.
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Proposition 11: Suppose that the process {x1, . . . } is α-
mixing with

∑∞
n=1 α (n) < ∞. Consider the matrix Ω, whose

elements are given by:

Ωii =
2
∑∞

h=1

(
p
(h)
i − p2

i

)
+ pi (1 − pi)

2pi
,

Ωii′ =
2
∑∞

h=1

(
p
(h)
ii′ +p

(h)
i′i

2 − pipi′

)
− pipi′

2 (pipi′)
1/2

.

Let (λ1, . . . , λB) be the eigenvalues of the matrix Ω arranged
in decreasing order. Therefore:

N (HN − H∞) →D −
B∑

i=1

λiχ
2
1,i.

Remark 12: (i) The derivation of a precise rate of conver-
gence of the finite-sample distribution to the asymptotic one,
namely

∥∥∥FN(HN−H∞) − F−�B
i=1 λiχ2

1,i

∥∥∥
∞

, seems to be out of
reach given the state of the literature. According to the proof
of Proposition 11, the rate of convergence of N (HN − H∞)
to its asymptotic distribution can be linked to the rate of
convergence of the chi-square statistic −N

∑B
i=1

(qi−pi)
2

2pi
.

In the dependent case there seems to be no available result
for the lattice case, but one can consider what happens in the
independent case as a benchmark. In that case, [27] showed
that the convergence rate is O

(
N−B−1

B

)
(see also [16]),

while [35] showed that the rate of convergence is O
(
N−1

)
for

B ≥ 6. We investigate the rate of convergence in Examples 13
and 14 below.

Example 13 (Dichotomized AR(1) Process - Examples 1, 6,
9 Continued): We have:

Ω11 = Ω22 = 1/4 + 1/π

∞∑
h=1

arcsin
(
αh
)
,

Ω12 = Ω21 = −1/4 − 1/π

∞∑
h=1

arcsin
(
αh
)
.

Therefore:

Ω =

{
1/4 + 1/π

∞∑
h=1

arcsin
(
αh
)} ·

[
+1 −1
−1 +1

]
.

This matrix is singular and therefore λ1 = tr (Ω) = 1/2 +
2/π
∑∞

h=1 arcsin
(
αh
)

and λ2 = 0. We have:

N (HN − H∞) →D −
{

1/2 + 2/π

∞∑
h=1

arcsin
(
αh
)} · χ2

1.

In Figure 2 we show the difference between the cdf
of the entropy and its asymptotic approximation for N ∈
{250, 1000, 4000}. The finite-sample distribution of the
entropy is discrete as q1 and q2 can assume only N +1 values.
These distribution are obtained through 1,000,000 samplings.
The Kolmogorov distances between the finite-sample distribu-
tions with N ∈ {250, 1000, 4000} and the asymptotic one are
respectively 0.04209815, 0.02110595 and 0.01056157, thus
suggesting a rate of convergence of O

(
N−1/2

)
, that is in line

with Remark 12 for B = 2.

Fig. 2. Difference between the cdf of the entropy and its asymptotic
approximation for N = 250, N = 1000 and N = 4000 (from above to
below).

Example 14 (GSR Model - Example 2 Continued): For
B ∈ {2, 3, 4, 5, 6} we compute the asymptotic distribution and
we compare it with the finite-sample distributions for N ∈
{10, 11, . . . , 250}. These curves are represented in Figure 3
and are consistent with an increase in the rate of convergence
when B increases. The jigsaw profile of the curves in the
figure does not seem to be an artifact of our simulations as it
appears consistently across different replications. The curves
for B running from 2 to 6 are respectively based on over
4 ·107, 4.5 ·107, 4.5 ·107, 2 ·108 and 5 ·108 (non-independent)
observations.

The combination of Propositions 4 and 11 gives the follow-
ing result.

Corollary 15: Suppose that the process {x1, . . . } is α-
mixing with

∑∞
n=1 α (n) < ∞. Consider the matrix Ω defined

in Proposition 11. Therefore:

N (HN − bias (HN ) − H∞) →D −
B∑

i=1

λi

(
χ2

1,i − 1
)
.

IV. ESTIMATION

When correcting for bias or computing the asymptotic
variance of the entropy, we need to compute the matrix Σ
whose elements are (see Lemma 32 in Section VII-B):

Σii = pi (1 − pi) + 2
∞∑

h=1

(
p
(h)
i − p2

i

)
,

Σii′ = 2
∞∑

h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .
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Fig. 3. Rate of convergence to zero of the Kolmogorov distance between the
cdf of the entropy and its asymptotic approximation for N ∈ {10, . . . , 250}
and B ∈ {2, . . . , 6}.

We can rewrite the elements as:

Σii =pi (1 − pi) + 2
∞∑

h=1

(
p
(h)
i − p2

i

)
(IV.1)

=
∞∑

h=−∞

(
p
(h)
i − p2

i

)
(IV.2)

Σii′ =2
∞∑

h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ (IV.3)

=
∞∑

h=−∞

(
p
(h)
ii′ − pipi′

)
(IV.4)

where we have used the fact that, under stationarity, p
(h)
i� =

p
(−h)
�i .
The computation of the bias is performed as follows rewrit-

ing it as:

bias (HN ) := −B − 1
2N

− 1
N

B∑
i=1

∑∞
h=1

(
p
(h)
i − p2

i

)
pi

= − 1
2N

B∑
i=1

Σii

pi
= − tr (dg (p̄)Σ)

2N
. (IV.5)

The matrix Ω, used to define the distribution in the degen-
erate case (see Proposition 11), is defined as:

Ω =
1
2
dg
(
p�(− 1

2 )
)

Σdg
(
p�(− 1

2 )
)

. (IV.6)

In the following we propose two methods aimed at correct-
ing the bias of the estimator of the entropy and at computing
its variance.

A. First Method

A first method that holds with generality is to estimate the
elements of the matrix Σ through an autocorrelation-consistent

(AC) covariance-matrix estimator, like the ones considered
in [5], [80], [93]. We show their general structure.

We define:
Π(h) = Cov

(
x1,x�

1+h

)
whose generic element is

[
Π(h)

]
ii′

=

Cov (1 {x1 = i} , 1 {x1+h = i�}) = p
(h)
ii′ − pipi′ . Thus,

from (IV.1) and (IV.3):

Σ =
∞∑

h=−∞
Π(h).

Estimators take the form:

Σ̂ =
N−1∑

h=−N+1

k

(
h

SN

)
Π̂

(h)

where k is a kernel function, SN is a bandwidth parameter
and:

Π̂
(h)

=

{
1
N

∑N
n=h+1 (xn − q) (xn−h − q)� h ≥ 0,

1
N

∑N
n=−h+1 (xn+h − q) (xn − q)� h < 0.

A plug-in estimator of Ω is:

Ω̂ =
1
2
dg
(
q�(− 1

2 )
)
Σ̂dg

(
q�(− 1

2 )
)

.

Therefore, a plug-in estimator of the bias is:

�bias (HN ) = −
tr
(
dg (q̄) Σ̂

)
2N

.

Example 16 (Dichotomized AR (1) Process - Examples 1, 6,
9, 13 Continued): Here we consider bias correction using the
estimator of [80] and [5]. The light grey jigsaw lines are
the trajectories of HN − �bias (HN ) with Newey–West bias
correction. They oscillate around a curved solid grey line that
is E

(
HN − �bias (HN )

)
with Newey–West bias correction,

a curved dashed grey line that is E

(
HN − �bias (HN )

)
with

Andrews bias correction, an horizontal dark grey line that is
H∞, a black solid curve that is E (HN ), and a black dashed
curve (almost indistinguishable from H∞) that is E (HN ) −
bias (HN ). It is apparent from the plot that HN − �bias (HN )
is in both cases less biased than HN (see also Figure 1).
However, the replacement of bias (HN ) with �bias (HN ) is
not without consequences. Indeed, the quantity E (HN ) −
bias (HN ) is represented by a black dashed line that is almost

undistinguishable from H∞, while E

(
HN − �bias (HN )

)
is

not. The vertical lines at N ∈ {100, 125, 150, 200} (respec-
tively black dashed, dotted, dash-dot, solid lines) represent the
values of N at which the empirical cdfs of HN − �bias (HN )
with Newey–West bias correction (black lines) and with
Andrews bias correction (grey lines) are computed.

In the following we will prove our results under the follow-
ing assumption.

AC Let q > 0 be such that:
∞∑

h=−∞
|h|q

∥∥∥Π(h)
∥∥∥

L2
< ∞
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Fig. 4. Ensemble and time averages of the entropy in the ergodic
(dichotomized AR (1)) case with bias corrections: on the left plot, 50 trajec-
tories of HN − ̂bias (HN ) with Newey–West bias correction as a function of
N (light grey jigsaw lines), H∞ (dark grey horizontal line), E (HN ) (black

solid curve), E

�
HN − ̂bias (HN )

�
with Newey–West bias correction (grey

solid curve), E

�
HN − ̂bias (HN )

�
with Andrews bias correction (grey

dashed curve), E (HN ) − bias (HN ) (black dashed curve), vertical lines at
N ∈ {100, 125, 150, 200} (respectively black dashed, dotted, dash-dot, solid
lines); on the right plot, empirical cdf of HN − ̂bias (HN ) with Newey–West
bias correction with N = 100 (black dashed line), N = 125 (black dotted
line), N = 150 (black dash-dot line), N = 200 (black solid line), with
Andrews bias correction with N = 100 (grey dashed line), N = 125 (grey
dotted line), N = 150 (grey dash-dot line), N = 200 (grey solid line).

and:

lim
x→0

1 − k (x)
|x|q = kq < ∞.

Then, the following conditions hold:
1) the process is α-mixing with

∑∞
n=1 n2α (n) <

∞;
2) SN/N → 0 as N → ∞;
3) k : R → [−1, 1] is symmetric, continuous at

0 and for all but a finite number of points, and
satisfies k (0) = 1 and

∫∞
−∞ k2 (x) dx < ∞;

4) if SN �→ ∞, S−1
N

∑N−1
j=−N+1 |k (j/SN )| =

O (1);
5) if q < 1/2, N

1/2−qS
−1/2

N = O (1);
6) one of the following three sets of conditions

hold true:
a) if SN → ∞ and kq �= 0, S

−q−1/2

N N 1/2 =
O (1);

b) if SN → ∞ and kq = 0:

S
−1/2
N N

1/2
N−1�
h=1

�
1 − k

�
h

SN

��
Π(h) = O (1)

and this is a fortiori true if S
−q−1/2

N N 1/2 =
O (1);

c) if SN �→ ∞:

S
−1/2
N N

1/2
N−1�
h=1

�
1 − k

�
h

SN

��
Π(h) =O (1).

Remark 17: (i) The case in which SN �→ ∞ is required
by some recent results on the estimation of AC covariance
matrices (see Theorem 2.1 in [93, p. 707]).
(ii) The case in which SN → ∞ is surely the most interesting.
If kq �= 0, conditions 2 and 6 imply that N

1
2q+1 � SN � N .

In this case condition 4 is always verified and condition 5 is
redundant, as N1−2q � N

1
2q+1 .

(iii) If the function k is non-negative and non-increasing over
[0,∞), one can adapt the reasoning in Theorem 1 in [8, p. 410]
to show that assumption 4 is automatically true:

S−1
N

N−1∑
j=−N+1

|k (j/SN)|

= S−1
N

⎧⎨⎩1 + 2
N−1∑
j=1

k (j/SN)

⎫⎬⎭
≤ S−1

N

{
1 + 2

∫ N

1

k (x/SN ) dx + 2k (1/SN)

}

≤ S−1
N + S−1

N

∫ ∞

−∞
k (x/SN ) dx + 2S−1

N k (1/SN)

≤
√∫ ∞

−∞
k2 (y) dy + 3S−1

N = O (1) .

This holds irrespective of the fact that SN �→ ∞ or
SN → ∞.

B. Second Method

Whenever the process is a Markov chain, an alternative is to
use the transition matrix in order to compute the probabilities
appearing in the formulas above. We suppose below that
the Markov chain is ergodic and regular, i.e. irreducible and
aperiodic.

We have p� = p�P, i.e. p is a normalized right eigenvector
of the stochastic transition matrix P corresponding to the
eigenvalue equal to 1. We define H := (I− P + ιp�)−1, the
fundamental matrix of [62] (see also [104]).

Proposition 18: For a Markov chain with transition matrix
P and ergodic distribution p, we have:

bias (HN ) = −2tr (H) − B − 1
2N

and:

Ω = −1

2
I+

1

2
dg
�
p� 1

2

� �
Hdg (p̄) + dg (p̄)H′ − U

�
dg
�
p� 1

2

�
.

Example 19 (GSR Model - Examples 2 and 14 Contin-
ued): We can characterize the quantities appearing in the
GSR model. From Theorem 2.2 in [23], the matrix P has
eigenvalues given by 2−m for 0 ≤ m ≤ B−1. Using Theorem
1 in [120], the eigenvalues of H−1 are 1 and 1 − 2−m for
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1 ≤ m ≤ B − 1, and the column eigenvector associated with
1 is proportional to ι. Therefore, the eigenvalues of H are
1 and (1 − 2−m)−1 for 1 ≤ m ≤ B − 1. This implies that
tr (H) = B +

∑B−1
m=1

1
2m−1 . Now, p = B−1ι from which the

matrix Ω in Proposition 18 becomes:

Ω =
1
2
(
H + H� − I − B−1U

)
.

We suppose to estimate P through P̂ defined as:[
P̂
]

ii′
=

∑N−1
j=1 1 {xj = i, xj+1 = i�}∑B

i′=1

∑N−1
j=1 1 {xj = i, xj+1 = i�}

and p through p̂, the normalized left eigenvector of P̂, i.e.
p̂�P̂ = p̂� (in general p̂ does not coincide with q). Moreover

we define Ĥ :=
(
I − P̂ + ιp̂�

)−1

.

C. Error in the Estimation of Bias

We provide a result on the average error induced by the
estimation of the bias.

Proposition 20: For the method in Section IV-A, under AC:

�bias (HN ) = bias (HN ) + OP

(
S

1/2

N N−3/2
)

.

For the method in Section IV-B:

�bias (HN ) = bias (HN ) + OP

(
N−3/2

)
.

Remark 21: (i) As SN = o (N) in AC, for the method in
Section IV-A, we get that the error is oP

(
N−1

)
.

(ii) The optimal rate of divergence of SN for the Newey–West
estimator in [80] is SN � N 1/3, and for the second-order
kernels in [5] it is SN � N

1/5. The rate of error in the bias
decreases respectively as OP

(
N−4/3

)
and OP

(
N−7/5

)
.

Corollary 22: Under the conditions of Propositions 7
and 20, if SN = o (N), we have:

√
N
(
HN − �bias (HN ) − H∞

)
→D N (

0, σ2
)

and

N
(
HN − �bias (HN ) − H∞

)
→D −

B∑
i=1

λi

(
χ2

1,i − 1
)
.

Using the previous results we can derive the following
corollary concerning the MSE.

Corollary 23: Under the hypotheses of Propositions 7, 11
and 20:

MSE(HN ) =

{
O
(
N−1

)
if σ2 > 0

O
(
N−2

)
if σ2 = 0

MSE (HN ) − MSE (HN − bias (HN )) = O
(
N−2

)
MSE

(
HN − �bias (HN )

)
− MSE (HN − bias (HN ))

=

⎧⎨⎩O
(
S

1/2

N N−2
)

if σ2 > 0

O
(
S

1/2

N N−5/2
)

if σ2 = 0

where the left-hand sides of the first two expressions are
always non-negative. For the method in Section IV-B, the
formulas still hold with SN ≡ 1.

Example 24 (GSR Model - Examples 2, 14 and 19 Contin-
ued): We consider a deck of B = 10 cards and we shuffle
it N = 1, 000 times. We record the position taken by the
card occupying the first position in the original order of the
deck. It is expected that, in a series of shuffles, the card will
visit each integer number between 1 and B with a probability
converging to B−1. Therefore, the limit value of the entropy
is H∞ = ln B = ln 10 .= 2.302585. We have simulated
1,000,000 times the process of shuffling. The average EHN

without bias correction is 2.296466. We have then computed
the Newey–West, Andrews and Markov bias corrections using
each time series of N observations. One should note that the
matrix P̂ for the Markov bias correction is estimated using
only N −1 observations. The values of E

(
HN − �bias (HN )

)
with Newey–West, Andrews and Markov bias corrections are
respectively 2.302135, 2.302413 and 2.302571, thus confirm-
ing the order suggested by Proposition 20. The empirical cdfs
of HN and HN − �bias (HN ) with Newey–West, Andrews and
Markov bias corrections confirm these findings. Note that the
Markov bias correction is more precise than the other two. It is
also possible to estimate the variance V (HN ) as 1.121541 ·
10−5, as well as the variances V

(
HN − �bias (HN )

)
with

Newey–West, Andrews and Markov bias corrections respec-
tively as 1.143687·10−5, 1.128285·10−5 and 1.126361·10−5.
This means that the bias correction slightly increases the
variance of the estimator, but the MSE is still improved by the
corrections; indeed, the MSE is respectively 4.865827 · 10−5,
1.163983 ·10−5, 1.131258 ·10−5 and 1.126382 ·10−5 for HN

and HN − �bias (HN ) with Newey–West, Andrews and Markov
bias corrections.

D. Error in the Estimation of the Distribution Under
Degeneracy

One of the problems raised by the previous result is to
determine what is the effect of estimating the weights on the
significance level of tests.

Proposition 25: Let
(
λ̂1, . . . , λ̂B

)
be the eigenvalues of the

matrix Ω̂ defined in Sections IV-A and IV-B. The following
bound holds true:∥∥∥F−�B

i=1 λ̂iχ2
1,i

− F−�B
i=1 λiχ2

1,i

∥∥∥
∞

= O
(∥∥∥Ω− Ω̂

∥∥∥
1

)
.

For the method in Section IV-A, under AC the bound is
OP

(
(SN/N)

1/2
)

. For the method in Section IV-B, the bound

is OP

(
N−1/2

)
.

Remark 26: (i) This result can be used as follows. Suppose
that we determine the quantile qα of a test of level α using
−∑B

i=1 λ̂iχ
2
1,i. Then:

F−�B
i=1 λiχ2

1,i
(qα) = α + O

(∥∥∥Ω− Ω̂
∥∥∥

1

)
.

(ii) The distance
∥∥∥F−�B

i=1 λ̂iχ2
1,i

− F−�B
i=1 λiχ2

1,i

∥∥∥
∞

is OP

(
N−1/3

)
for the Newey–West estimator in [80],

OP

(
N−2/5

)
for the second-order kernels in [5], and

OP

(
N−1/2

)
for the flat-top kernels in [93].

Example 27 (GSR Model - Examples 2, 14, 19
and 24 Continued): We compute the asymptotic distribution
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Fig. 5. Empirical cdf of HN (black line), HN − ̂bias (HN ) with Newey–
West bias correction (grey dashed line), HN − ̂bias (HN ) with Andrews bias
correction (grey dotted line), HN − ̂bias (HN ) with Markov bias correction
(grey dash-dot line), in comparison with the expected values EHN (vertical
black solid line), E

�
HN − ̂bias (HN )

�
with Newey–West (vertical grey

dashed line), Andrews (vertical grey dotted line) and Markov (vertical grey
dash-dot line) bias corrections, and the true value H∞ (vertical black dashed
line).

TABLE I

AVERAGE KOLMOGOROV DISTANCE BETWEEN THE EXACT ASYMPTOTIC

DISTRIBUTION AND THE ONE OBTAINED ESTIMATING λ̂i , FOR i =
1, . . . , B THROUGH N OBSERVATIONS

F−�B
i=1 λiχ2

1,i
and we compare it with the distributions using

matrices Σ̂ based on time series of length N for several values
B, as described in Example 24. In Table I we compute the
quantity:

E

∥∥∥F−�B
i=1 λ̂iχ2

1,i
− F−�B

i=1 λiχ2
1,i

∥∥∥
∞

where the expectation is computed over the distribution of the
weights based on a series of length N . It is apparent that when
the number of observations N is multiplied by 4 there is a
division by 2 of the average Kolmogorov distance, coherently
with the OP

(
N−1/2

)
rate predicted by Proposition 25.

V. A GOODNESS-OF-FIT TEST

In this section, we propose a test of goodness-of-fit based
on the entropy.

We first describe the setup, then we give two different
interpretations of the test procedure. Suppose to observe a
stationary time series {x̃1, . . . , x̃N} with x̃1 taking its values in

R. Suppose that the process is α-mixing with
∑∞

n=1 α (n) <
∞. Its marginal distribution has a density f with respect
to a measure σ. We want to test the null hypothesis H0 :
f ≡ f0, where f0 is a completely specified density function
with respect to σ. We identify a partition of the real line
{I1, . . . , IB} such that:∫

Ib

f0 (x) σ (dx) = B−1, b = 1, . . . , B.

We introduce the symbolized time series {x̃1, . . . , x̃N}
defined by:

xi =
B∑

b=1

b · 1 {x̃i ∈ Ib} .

The symbolization is clearly much simpler when the mea-
sure σ is the Lebesgue measure and the density with respect to
σ is a classical probability density function. Note that, by the
very definition of α-mixing, the mixing coefficients of the
symbolized process are majorized by the ones of the original
process.

The first justification of the test uses the different behavior
of the entropy under the null and the alternative hypotheses.
Under the null hypothesis, the entropy computed on the time
series {x̃1, . . . , x̃N} is degenerate as in Proposition 11. The
asymptotic distribution of the entropy based on {x̃1, . . . , x̃N}
satisfies:

N (HN − H∞) →D −
B∑

i=1

λiχ
2
1,i

where H∞ = ln B. Therefore, under H0, an acceptance
region A = [qα, 0] corresponding to a significance level α
for N (HN − ln B) can be built using the quantile qα of
−∑B

i=1 λiχ
2
1,i such that F−�B

i=1 λiχ2
1,i

(qα) = α.
Now, we investigate what happens under the alternative

hypothesis H1 : f ≡ f1 �= f0. The test appears to have no
power against any f1 such that:∫

Ib

f1 (x) σ (dx) = B−1, b = 1, . . . , B. (V.1)

If, however, this does not hold true, Proposition 7 implies
that σ is strictly positive and that:

P {N (HN − ln B) ∈ A}
= P

{
HN ≥ ln B +

qα

N

}
= P

{√
N

HN − H∞
σ

≥
√

N
ln B − H∞

σ
+

qα√
Nσ

}
≤
∥∥∥F√

N
HN −H∞

σ

− Φ
∥∥∥
∞

+ Φ
(
−
√

N
ln B − H∞

σ
− qα√

Nσ

)
= O

(
N−1/2

)
+ Φ

(√
N

H∞ − ln B

σ
− qα√

Nσ

)
.

Now, H∞ ≤ ln B with equality if and only if∫
Ib

f1 (x) σ (dx) = B−1 for b = 1, . . . , B (see, e.g.,

[72, p. 27]). Therefore, Φ
(√

N H∞−ln B
σ − qα√

Nσ

)
↓ 0,

P {N (HN − ln B) ∈ A} ↓ 0 and the power of the test
converges to 1.
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Now we come to the second justification. We build the like-
lihood of the symbolized time series {x̃1, . . . , x̃N} neglecting
the dependence between the values, i.e. supposing that they are
independent. This object is sometimes called a pseudolikeli-
hood (see, e.g., [21, Section 2.5] for a general result and [36],
[100] for earlier examples). Despite the data are dependent,
it is still possible to formulate a LR test of H0 : f ≡ f0 that
takes the form (see, e.g., [117, p. 252]):

LR =
B∑

i=1

qi ln
qi

B−1
=

B∑
i=1

qi ln qi + ln B = H∞ − HN .

In the context of [79, Section 9], this is called a distance
metric statistic. This test will not have the usual asymptotic
distribution of LR tests but its distribution can be obtained
from the one of the entropy. Linking this goodness-of-fit test
with a LR test also shows that the test enjoys some optimality
properties in the case of independent data and outperforms
commonly used tests such as the chi-square test (see, e.g.,
[117, Section 17.6]).

In the following we provide two examples showing the
finite-sample properties of the test.

Example 28 (Iid Process): We consider the previous pro-
cedure when applied to an iid standard Gaussian sample.
We symbolize the process in B = 4 equally probable intervals.
In Figure 6, we depict the deviation between the actual and
the nominal significance level:

α �→P {N (HN − ln B) /∈ A} − P

{
−

B∑
i=1

λiχ
2
1,i /∈ A

}

=P {N (HN − ln B) < qα} − P

{
−

B∑
i=1

λiχ
2
1,i < qα

}
=P {N (HN − ln B) < qα} − α

under the null hypothesis, for B = 4, N ∈ {50, 100, 200, 400}
and α ranging from 0.01 to 0.1. As the curves are based on
5 · 107 replications, for both plots the irregular profile of the
curves is not an artifact of the simulations. In Figure 7 we
depict the statistical power function:

α �→ π=P {N (HN −lnB) /∈ A}=P {N (HN − ln B)<qα}
under some alternative hypotheses, i.e. when the data are from
a sample of iid Gaussian random variables with mean c ∈
{0.1, 0.2, 0.3} and variance 1. These curves are based on 107

replications.
Example 29 (Symbolized AR(1) Process): We consider the

process described in Example 1. We want to test that its
marginal distribution is standard Gaussian. In order to do
so, we symbolize the process as explained above. We apply
the Newey–West variance estimator with bandwidth equal to
SN =

⌈
N 1/3

⌉
and the Andrews quadratic spectral variance

estimator with bandwidth equal to SN =
⌈
N 1/5

⌉
. The second

choice is advocated in [31, pp. 551, 573] and criticized
in [4, p. 17]. The first choice is rather similar to other
ones proposed in the literature, such as the commonly used
SN =

⌈
0.75 · N 1/3

⌉
, but we have chosen the present one

for simplicity. We have considered the adaptive procedures
of [5] and [81], but in a small percentage of cases they fail to

Fig. 6. Difference between the actual and the nominal significance level in the
independent case, for α ∈ [0.01, 0.1], B = 4 and N ∈ {50, 100, 200, 400}
(continuous black line for N = 50, continuous grey line for N = 100, dotted
black line for N = 200, dotted grey line for N = 400).

Fig. 7. Power function in the independent case, for α ∈ [0.01, 0.1], B = 4,
N ∈ {50, 100, 200, 400}, c ∈ {0.1, 0.2, 0.3} (thin line for power equal to
α, continuous line for N = 50, dashed line for N = 100, dotted line for
N = 200, dash-dot line for N = 400; left column for c = 0.1, central
column for c = 0.2, right column for c = 0.3).

deliver reliable results, and this can be a problem in large
simulations. Figure 8 represents the deviation between the
actual and the nominal significance level for B = 4, N ∈
{50, 100, 200, 400}, α ranging from 0.01 to 0.1 with Newey–
West (on the left) and Andrews (on the right) estimators. The
curves look smoother than the ones for the independent case
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Fig. 8. Difference between the actual and the nominal significance level in the
dependent case with Newey–West estimator (on the left) and Andrews estima-
tor (on the right), for α ∈ [0.01, 0.1], B = 4 and N ∈ {50, 100, 200, 400}
(continuous line for N = 50, dashed line for N = 100, dotted line for
N = 200, dash-dot line for N = 400).

Fig. 9. Power function in the dependent case with Newey–West (in black)
and Andrews (in grey) estimators, for α ∈ [0.01, 0.1], B = 4, N ∈
{50, 100, 200, 400}, c ∈ {0.1, 0.2, 0.3} (thin line for power equal to α,
continuous line for N = 50, dashed line for N = 100, dotted line for
N = 200, dash-dot line for N = 400; left column for c = 0.1, central
column for c = 0.2, right column for c = 0.3).

because the weights of the distribution are computed on the
basis of the data and differ for each replication. Even for
N = 50, the error in the significance level is rather small.

Figure 9 represents the statistical power functions for Newey–
West (in black) and Andrews (in grey) estimators. In this case
the plots are more similar to the ones for the independent case.

VI. CONCLUSION

In this contribution we consider the estimation of the
entropy of data coming from a discretely-supported stochastic
process. In order to do so, we use the plug-in estimator of
the entropy, in which the probabilities of the different values
are replaced by their empirical estimators. With respect to the
state of the art, we provide new results concerning asymptotic
normality and bias, and we fix an error about formulas for bias
correction and variance that, started in [102], has propagated
through the literature. We demonstrate that our correction
of the bias removes the O

(
N−1

)
part of the bias of the

observed entropy HN . One of the central outcomes of the
paper is represented by the behavior of the distribution under
degeneracy, i.e. when the marginal distribution of the process
assume equal probabilities for each value of the time series.
Indeed, at odds with the general case, under degeneracy the
statistic–with a different scaling–converges in distribution to
a weighted sum of chi-square random variables. We finally
introduce some estimators of the distribution under degener-
acy and we provide results on the error in the estimation.
To complete our analysis, we showcase an application of the
entropy to a goodness-of-fit test for the marginal distribution
of the process. The simulation studies performed throughout
the paper to investigate the finite-sample properties of the
estimators enhance the theoretical conclusions.

The present study has some limitations. First of all, we only
consider strictly stationary stochastic processes under ergod-
icity and, for some results, mixing. However, some processes
used in signal processing and information theory exhibit
limited amounts of nonstationarity such as cyclostationarity
(see [33]). Further generalizations of the properties could be
obtained through asymptotic mean stationarity, a more general
concept (see, e.g., [49]) than stationarity, encompassing cyclo-
stationarity. Second, we consider the properties of the plug-in
estimator of the entropy in the discrete or discretized case. This
has the consequence, among other things, that the goodness-of-
fit test that we propose has no power against some alternative
hypotheses (see (V.1)). It could be possible to circumvent this
problem by letting the number of classes B to diverge together
with the number of observations N .

VII. PROOFS

A. Preliminary Results

Here we collect two results for future reference.
The first result (Lemma 30) is a general expansion of HN

already introduced in [47]. To keep the paper self-contained,
we reproduce the proof here. The second result (Lemma 31)
is a multivariate second-order delta method that will be used
in the proof of the asymptotic distribution under degeneracy.
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Lemma 30: We have:

HN =H∞ −
B∑

i=1

(qi − pi) ln pi

+
r∑

m=2

(−1)m−1

m (m − 1)

B∑
i=1

(qi − pi)
m

pm−1
i

+ Rr+1

where |Rr+1| ≤ 1
r(r+1)

∑B
i=1

|qi−pi|r+1

(λ�pi)
r for λ� > 0 indepen-

dent of any qi.
Proof: We take a limited development of −qi ln qi for qi

around pi with Lagrange remainder. We have:

−qi ln qi = − pi

(
1 +

qi − pi

pi

)
ln
[
pi

(
1 +

qi − pi

pi

)]
= − pi ln pi − (qi − pi) ln pi

+
r∑

m=2

(−1)m−1

m (m − 1)
(qi − pi)

m

pm−1
i

+ Rr+1,i

where:

Rr+1,i =
(−1)r

r (r + 1)
(qi − pi)

r+1

ξr
i

,

ξi =λipi + (1 − λi) qi, 0 < λi < 1.

This implies that:

HN =H∞ −
B∑

i=1

(qi − pi) ln pi

+
r∑

m=2

(−1)m−1

m (m − 1)

B∑
i=1

(qi − pi)
m

pm−1
i

+ Rr+1

where Rr+1 =
∑B

i=1 Rr+1,i. Now we majorize Rr+1.
Let us first suppose that |qi − pi| < (1 − ε) pi for 0 < ε <

1. This implies that
∣∣∣ qi−pi

pi

∣∣∣ < 1 − ε and −qi ln qi can be
expanded in an infinite series:

−qi ln qi = − pi ln pi − (qi − pi) ln pi

+
r∑

m=2

(−1)m−1

m (m − 1)
(qi − pi)

m

pm−1
i

+
∞∑

m=r+1

(−1)m−1

m (m − 1)
(qi − pi)

m

pm−1
i

so that Rr+1,i =
∑∞

m=r+1
(−1)m−1

m(m−1)
(qi−pi)

m

pm−1
i

. Now:

|Rr+1,i| ≤
∞∑

m=r+1

1
m (m − 1)

|qi − pi|m
pm−1

i

≤
∞∑

m=r+1

|qi − pi|m
pm−1

i

=
|qi − pi|r+1

pr
i

∞∑
j=0

|qi − pi|j
pj

i

≤ |qi − pi|r+1

εpr
i

where we have used the fact that, as
∣∣∣ qi−pi

pi

∣∣∣ < 1 − ε,∑∞
j=0

|qi−pi|j
pj

i

=
(
1 − |qi−pi|

pi

)−1

≤ ε−1.

Now, let us consider the case |qi − pi| ≥ (1 − ε) pi for 0 <
ε < 1. Let Aε (pi) := {qi ∈ [0, 1] : |qi − pi| ≥ (1 − ε) pi}.3

3We amend the notation used by [47], Aε (pi, qi), as the set does not depend
on qi.

Then, Rr+1,i = (−1)r

r(r+1)
(qi−pi)

r+1

ξr
i

will not be zero on Aε (pi).
We have:

|Rr+1,i| =
1

r (r + 1)
|qi − pi|r+1

(λipi + (1 − λi) qi)
r

or:

λi =

(
|qi−pi|r+1

r(r+1)|Rr+1,i|
) 1

r − qi

pi − qi
.

The set Aε (pi) is compact and qi �→ λi is a continuous
positive function, therefore it attains its minimum on that set
and the minimum must be positive. We define:

λ�
B := min

1≤i≤B
min

qi∈Aε(pi)
λi (qi) > 0

and we note that this is independent of N .
We define λ� := min

{
λ�

B, ε
1
r

}
> 0 and we note it is

independent of N . The final formula is easily obtained.
Lemma 31: Let {Xn} be a sequence of vectors in Rk.

Assume that τn (Xn − μ) →D X where μ is a constant vector
and {τn} is a sequence of constants such that τn → ∞. Let
g : Rk → R be twice differentiable at μ with continuous
derivatives and suppose that ∂g(x)

∂x′

∣∣∣
x=µ

(x − μ) ≡ 0 for x in

a neighborhood of μ. Then:

τ2
n (g (Xn) − g (μ)) →D

1
2
X� ∂2g (x)

∂x∂x�

∣∣∣∣
x=µ

X.

Proof: The proof follows the one of [69, Theorem 11.2.14
(i), p. 436]. A limited development gives the following
formula:

g (x) =g (μ) +
∂g (x)
∂x�

∣∣∣∣
x=µ

(x − μ)

+
1
2

(x − μ)�
∂2g (x)
∂x∂x�

∣∣∣∣
x=µ

(x − μ) + R (x− μ)

where R (y) = o
(
	y	2

L2

)
as 	y	L2 ↓ 0. Now, from

∂g(x)
∂x′

∣∣∣
x=µ

(x − μ) ≡ 0:

τ2
n (g (Xn) − g (μ)) =

1
2
τ2
n (Xn−μ)�

∂2g (x)
∂x∂x�

∣∣∣∣
x=µ

(Xn − μ)

+ τ2
nR (Xn − μ) .

By the Continuous Mapping Theorem, the first term on the
right-hand side yields:

1
2
τ2
n (Xn − μ)�

∂2g (x)
∂x∂x�

∣∣∣∣
x=µ

(Xn − μ)

→D
1
2
X� ∂2g (x)

∂x∂x�

∣∣∣∣
x=µ

X.

We then show that τ2
nR (Xn − μ) = oP (1). We define the

function h (y) := R (y) / 	y	2
L2 for y �= 0 and h (0) := 0.

This function is continuous at 0 and, therefore:

τ2
nR (Xn − μ) = τ2

n 	Xn − μ	2
L2 h (Xn − μ)

where τ2
n 	Xn − μ	2

L2 = OP (1), by definition, and
h (Xn − μ) = oP (1), by the fact that τn (Xn − μ) →D X
implies that Xn →P μ and by the Continuous Mapping
Theorem. By Slutsky’s theorem, we get the final result.
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B. Variances

The following lemma contains some formulas for the vari-
ances and covariances of q and a central limit theorem for q.

Lemma 32: Under stationarity:

V

[√
N (qi − pi)

]
= pi (1 − pi) + 2

N−1∑
h=1

(
1 − h

N

)(
p
(h)
i − p2

i

)
,

Cov
[√

N (qi − pi) ,
√

N (qi′ − pi′)
]

= 2
N−1∑
h=1

(
1 − h

N

)(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

Under α-mixing, if
∑∞

n=1 α (n) < ∞,
√

N (q − p) →D
N (0,Σ) where:

Σii = lim
N→∞

V

[√
N (qi − pi)

]
=pi (1 − pi) + 2

∞∑
h=1

(
p
(h)
i − p2

i

)
,

Σii′ = lim
N→∞

Cov
[√

N (qi − pi) ,
√

N (qi′ − pi′)
]

=2
∞∑

h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

Proof: In the following, we will frequently use the
rewriting:

N∑
k=1

N∑
�=1

p
(k−�)
ij =Npi · 1 {i = j}+

N−1∑
h=1

(N − h)
(
p
(h)
ij +p

(h)
ji

)
(VII.1)

where we have used the equality p
(h)
i� = p

(−h)
�i , valid under

stationarity.
We have:

V

[√
N (qi − pi)

]
= NV (qi)

=
1
N

V

⎛⎝ N∑
j=1

1 {xj = i}
⎞⎠ (VII.2)

=
1
N

N∑
j=1

N∑
j′=1

Cov (1 {xj = i} , 1 {xj′ = i})

=
1
N

N∑
j=1

N∑
j′=1

{
E (1 {xj = i} 1 {xj′ = i}) − p2

i

}
=

1
N

N∑
j=1

N∑
j′=1

(
p
(j−j′)
i − p2

i

)

= pi (1 − pi) + 2
N−1∑
h=1

(
1 − h

N

)(
p
(h)
i − p2

i

)
(VII.3)

and:

Cov
[√

N (qi − pi) ,
√

N (qi′ − pi′)
]

= NCov (qi, qi′) (VII.4)

=
1
N

Cov

⎛⎝ N∑
j=1

1 {xj = i} ,

N∑
j′=1

1 {xj′ = i�}
⎞⎠

=
1
N

N∑
j=1

N∑
j′=1

(
p
(j−j′)
ii′ − pipi′

)

= 2
N−1∑
h=1

(
1 − h

N

)(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′

(VII.5)

where we have used repeatedly (VII.1) and
2
∑N

h=1

(
1 − h

N

)
= N − 1.

Now, we can apply Lemma 1.1 in [99, p. 2]
to V

[√
N (qi − pi)

]
. If lim�→∞ pi (1 − pi) +

2
∑�

h=1

(
p
(h)
i − p2

i

)
exists, then V

[√
N (qi − pi)

]
converges to the same limit. Now, it is clear that∣∣∣p(h)

i − p2
i

∣∣∣ ≤ α (h) for any i. If the process is α-mixing with∑∞
n=1 α (n) < ∞, we can apply Lemma 1.2 in [99, p. 3].

Then limN→∞
∑N−1

h=1

(
p
(h)
i − p2

i

)
exists and can be written

as
∑∞

h=1

(
p
(h)
i − p2

i

)
. Therefore:

lim
N→∞

V

[√
N (qi − pi)

]
= pi (1 − pi) + 2

∞∑
h=1

(
p
(h)
i − p2

i

)
.

(VII.6)

The same reasoning allows us to write:

lim
N→∞

Cov
[√

N (qi − pi) ,
√

N (qi′ − pi′)
]

= 2
∞∑

h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

To prove the asymptotic normality of
√

N (q − p), it is
enough to apply the CLT in Theorem 18.5.4 of [53]. A vector
version of the same result is in [26, p. 67].

C. Bias

Proof of Proposition 4: From Lemma 30 in Section VII-A
with r = 2, we have:

EHN = H∞ − 1
2

B∑
i=1

E (qi − pi)
2

pi
+ ER3

where:

E |R3| ≤ 1
6

B∑
i=1

E |qi − pi|3
(λ�pi)

2 .

Under stationarity:
B∑

i=1

E (qi − pi)
2

2pi

=
1

2N

B∑
i=1

⎧⎨⎩(1 − pi) +
2
∑N−1

h=1

(
1 − h

N

) (
p
(h)
i − p2

i

)
pi

⎫⎬⎭
=

B − 1
2N

+
1
N

B∑
i=1

∑N−1
h=1

(
1 − h

N

) (
p
(h)
i − p2

i

)
pi
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=
B − 1
2N

+
1
N

B∑
i=1

∑N−1
h=1

(
p
(h)
i − p2

i

)
pi

− 1
N2

B∑
i=1

∑N−1
h=1 h

(
p
(h)
i − p2

i

)
pi

.

If the process is ergodic stationary, then:

1
N − 1

N−1∑
h=1

(
p
(h)
i − p2

i

)
→ 0

(see, e.g., [25, Theorem 13.13]). Now, we show that
1

N2

∑N−1
h=1 h

(
p
(h)
i − p2

i

)
→ 0. Note that most majorizations

do not work here as they would involve taking the absolute
value of p

(h)
i −p2

i . Let us define sn := p
(n)
i −p2

i for n ∈ N0 and
s0 := 0, and define {an} as the sequence whose partial sums
are given by {sn}, i.e. sn =

∑n
j=0 aj or an = sn − sn−1.

Now we define the Cesáro averaging methods (C, α) for α ≥ 0
(see [108, Section 2.2]). Using Definitions 2.9 and 2.10 and
Lemma 2.11 in [108], we are led to consider:

Aα
n

Eα
n

=
∑n

k=0

(
n−k+α

α

)
ak(

n+α
α

) .

If limn→∞ Aα
n/Eα

n converges to a limit, we say that {an} is
summable (C, α), where summability (C, k) implies summa-
bility (C, k + 1) to the same limit (see [127, Vol. I, p. 76]).
Now:

A0
n

E0
n

=
n∑

k=0

ak = sn

A1
n

E1
n

=
∑n

k=0 (n − k + 1) ak

n + 1
=
∑n

k=0 sk

n + 1
A2

n

E2
n

=
∑n

k=0 (n − k + 1) (n − k + 2) ak

(n + 1) (n + 2)

=2
{∑n

k=0 sk

n + 2
−

∑n
k=0 ksk

(n + 1) (n + 2)

}
.

The sequence {an} is summable (C, 1) with limit 0 as
limn→∞ A1

n/E1
n = 0. Therefore it is also summable (C, 2),

i.e.:

lim
n→∞ 2

{∑n
k=0 sk

n + 2
−

∑n
k=0 ksk

(n + 1) (n + 2)

}
= 0

and, as a result, limn→∞ n−2
∑n

k=0 ksk = 0. In our case,
1

N2

∑N−1
h=1 h

(
p
(h)
i − p2

i

)
→ 0.

As to the remainder term:

E |R3| ≤ 1
6

B∑
i=1

E |qi − pi|3
(λ�pi)

3 ≤ 1
6

B∑
i=1

E |qi − pi|2
(λ�pi)

3 = o (1) .

This can also be proved in a different way as in [87,
Section 4]. Let us start from the formula:

HN = H∞ −
B∑

i=1

(qi − pi) ln pi − DKL (q;p)

where DKL (q;p) :=
∑B

i=1 qi ln qi

pi
is the Kullback–Leibler

divergence. Therefore, EDKL (q;p) = H∞ − EHN and,

as DKL (q;p) ≥ 0 (see [34, p. 422]), EHN ≤ H∞ and the
bias of HN is always negative. Now, from [34, Theorem 5]:

DKL (q;p) ≤ ln

(
1 +

B∑
i=1

(qi − pi)
2

pi

)
and, through Jensen inequality:

EDKL (q;p) ≤ E ln

(
1 +

B∑
i=1

(qi − pi)
2

pi

)

≤ ln

(
1 +

B∑
i=1

E (qi − pi)
2

pi

)
.

At last:

0 ≤ H∞ − EHN ≤ ln

(
1 + E

B∑
i=1

(qi − pi)
2

pi

)

≤
B∑

i=1

E (qi − pi)
2

pi

and:∣∣∣∣∣H∞ − EHN − 1
2

B∑
i=1

E (qi − pi)
2

pi

∣∣∣∣∣ ≤ 1
2

B∑
i=1

E (qi − pi)
2

pi
.

Now we turn to the mixing case. We can apply the reasoning
leading to (VII.6) in Lemma 32 in Section VII-B to show that

lim
N→∞

N

B∑
i=1

E (qi − pi)
2

2pi
=

B − 1
2

+
B∑

i=1

∑∞
h=1

(
p
(h)
i − p2

i

)
pi

.

As far as E |R3| is concerned, we use Theorem 6.3 in [99]:

N3E |qi − pi|3 = E |N (qi − pi)|3

≤ 2113
{

s3
N + N

∫ 1

0

[
α−1 (u) ∧ N

]2
Q3 (u) du

}
where s2

N :=
∑N

j=1

∑N
�=1 |Cov (1 {xj = i} , 1 {x� = i})|

and Q (·) is the quantile function of the random variable
1 {xj = i}. Now:

s2
N :=

N∑
j=1

N∑
�=1

∣∣∣p(j−�)
i − p2

i

∣∣∣
≤Npi (1 − pi) + 2N

N−1∑
h=1

α (h) − 2
N−1∑
h=1

hα (h)

≤Npi (1 − pi) + 2N
N−1∑
h=1

α (h) .

As
∑∞

h=1 α (h) < ∞, s2
N = O (N). From (C.10) in [99],

using the fact that Q (·) ≤ 1:

Mp,α,N (Q) =
∫ 1

0

[
α−1 (u) ∧ N

]p−1
Qp (u) du

≤max (1, p− 1)
N−1∑
h=1

(h + 1)p−2
α (h)

and E |qi − pi|3 � N− 3
2 + N−2

∑N−1
h=1 hα (h). From∑∞

h=1 α (h) < ∞ we get α (h) = o
(
h−1

)
and E |R3| =

o
(
N−1

)
.
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D. Asymptotic Normality and Berry–Esséen Bound

Proof of Proposition 7: Asymptotic normality of HN

follows from asymptotic normality of
√

N (q − p) (see
Lemma 32 in Section VII-B) and the delta method (see,
e.g., Example 6.1 (b) in [109, p. 279]). The quantity√

N (HN − H∞) is asymptotically equivalent to:

B∑
i=1

∂H∞
∂pi

·
√

N (qi − pi) = −
B∑

i=1

(1 + ln pi) ·
√

N (qi − pi)

= −
B∑

i=1

ln pi ·
√

N (qi − pi) .

This is asymptotically normal with variance:

B∑
i=1

B∑
i′=1

Σii′ ln pi ln pi′

=
B∑

i=1

pi ln2 pi

+
B∑

i=1

B∑
i′=1

{
2

∞∑
h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′

}
· ln pi ln pi′

=
B∑

i=1

pi ln2 pi −
(

B∑
i=1

pi ln pi

)2

+ 2
B∑

i=1

B∑
i′=1

∞∑
h=1

(
p
(h)
ii′ + p

(h)
i′i

2
− pipi′

)
ln pi ln pi′

where Σii and Σii′ are defined in Lemma 32 in Section VII-B,
and the first equality uses the fact that Σii is identical to pi

plus the expression for Σii′ in which i� is formally replaced
by i.

Now we turn to the Berry–Esséen bound. We will apply
Lemma 1.3 in [109, p. 261], i.e. the inequality:

	FW+Δ − Φ	∞ ≤	FW − Φ	∞ + 4E |WΔ| + 4E |Δ|
≤ 	FW − Φ	∞ + 4

√
EW 2EΔ2 + 4

√
EΔ2,

valid for any random variables W and Δ. We iden-
tify W + Δ with

√
N (HN − H∞) /σ and W with

−σ−1
∑B

i=1

√
N (qi − pi) · ln pi. As far as 	FW − Φ	∞ is

concerned, if
∑∞

j=1 jϕ (j) < ∞, it is shown to be O
(
N−1/2

)
in [97, Théorème 1]. Now we turn to the second term, and we
remark that EW 2 = 1. Therefore:

	FW+Δ − Φ	∞ ≤ O
(
N−1/2

)
+ 8

√
EΔ2.

From Lemma 30 in Section VII-A, we have:

HN = H∞ −
B∑

i=1

(qi − pi) ln pi + R2

where |R2| ≤ 1
2

∑B
i=1

(qi−pi)
2

λ�pi
. Therefore, Δ = −

√
N
σ R2 and:

Δ2≤ N

4λ�,2σ2

(
B∑

i=1

(qi − pi)
2

pi

)2

≤ NB

4λ�,2σ2

B∑
i=1

(qi − pi)
4

p2
i

.

Using the fact that α (n) ≤ ϕ (n) and ϕ (n) ≤ κ (n + 1)−2

for any n, by Remark 6.3 in [99] or Eq. (2.10) in [99,
p. 36], E (qi − pi)

4 = O
(
N−2

)
and EΔ2 = O

(
N−1

)
. As a

consequence the whole bound is O
(
N−1/2

)
.

E. Distribution Under Degeneracy

Proof of Proposition 11: A seldom observed fact is that,
if pi ≡ 1/B for any i, the first-order term in Lemma 30 in
Section VII-A is:

B∑
i=1

(qi − pi) ln pi = − ln B ·
B∑

i=1

(
qi − 1

B

)

= − ln B ·
(

B∑
i=1

qi − 1

)
= 0.

In this case the asymptotic distribution is a degenerate nor-
mal random variable with null variance. Therefore, we apply
Lemma 31 in Section VII-A identifying k = B, τn =

√
N ,

Xn = q, μ = p and g (x) = −∑B
i=1 xi ln xi. The conver-

gence
√

N (q − p) →D N (0,Σ) (that is τn (Xn − μ) →D
X) is proved in Lemma 32 in Section VII-B. We need to
compute ∂2g(x)

∂x∂x′ that is the diagonal matrix with
[

∂2g(x)
∂x∂x′

]
ii

=

− 1
xi

, so that ∂2g(x)
∂x∂x′

∣∣∣
x=µ

is −dg (p). If we write G for a

standard normal vector, we have:

N (HN − H∞) →D −1
2
G�Σ

1
2 dg (p)Σ

1
2 G.

It can be shown (see, e.g., [112]) that the asymptotic
distribution of N (HN − H∞) is minus a weighted sum of chi-
square random variables whose weights are the eigenvalues,
arranged in decreasing order, (λ1, . . . , λB) of the matrix Ω
where:

Ωii =
1

2pi
Σii,

Ωij =
1

2 (pipj)
1/2

Σij ,

where Σii and Σii′ are defined in Lemma 32 in Section VII-B.
At last:

N (HN − H∞) →D −
B∑

i=1

λiχ
2
1,i.

Proof of Corollary 15: We have:

N (HN−bias (HN )−H∞)=N (HN − H∞)−Nbias (HN ) .

From (IV.5) and (IV.6):

bias (HN ) = − tr (dg (p̄)Σ)
2N

= − tr (Ω)
N

= −
∑B

i=1 λi

N
,

from which we get the result.

F. Preliminary Results on Markov Chain Estimation

Proof of Proposition 18: We can write:[
p
(h)
ii′ − pipi′

]
= dg (p)Ph − pp�
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·
[ ∞∑

h=1

(
p
(h)
ii′ − pipi′

)
+

∞∑
h=1

(
p
(h)
i′i − pipi′

)
+ pi1 {i = i�} − pipi′ ]

=
∞∑

h=1

(
dg (p)Ph − pp�)+

∞∑
h=1

(
dg (p)Ph − pp�)�

+ dg (p) − pp�.

We then note that pp� = dg (p) ιp� allows us to write:
∞∑

h=1

(
dg (p)Ph − pp�) = dg (p)

∞∑
h=1

(
Ph − ιp�) .

It is well known that:
∞∑

h=0

(
Ph − ιp�) = (I − P + ιp�)−1 = H

from which: ∞∑
h=1

(
Ph − ιp�) = H− I. (VII.7)

Therefore:

Σ =
∞∑

h=1

(
dg (p)Ph − pp�)+

∞∑
h=1

(
dg (p)Ph − pp�)�

+ dg (p) − pp�

= dg (p)
∞∑

h=1

(
Ph − ιp�)+

∞∑
h=1

(
Ph − ιp�)� dg (p)

+ dg (p) − pp�

= dg (p) (H− I) + (H� − I) dg (p) + dg (p) − pp�

= dg (p)H + H�dg (p) − dg (p) − pp�.

The bias can be computed as:

bias (HN ) = − tr (dg (p̄)Σ)
2N

= −2trH− B − 1
2N

where we have used the equalities tr (AB) = tr (BA),
dg (a) dg (ā) = I, tr (A) = tr (A�), pp� = pι�dg (p) and
tr (pι�) = tr (ι�p) = 1.

The matrix Ω used to obtain the distribution in the degen-
erate case is then defined as:

Ω = −1

2
I+

1

2
dg
�
p� 1

2

��
Hdg (p̄) + dg (p̄)H′ − U

�
dg
�
p� 1

2

�
.

Lemma 33: For the method in Section IV-B:

�bias (HN ) � bias (HN ) + OP

(
N−3/2

)
.

Proof: Using the matrix differential notation (see [14],
[50], [75]), we write dP := P̂−P, where dP is asymptotically
negligible of order OP

(
N−1/2

)
. It is easy to see that:

(p̂− p)� (I− P + ιp�) = p̂�
(
P̂ − P

)
.

We have:

(p̂− p)� (I − P + ιp�) = p̂�dP

(p̂ − p)� = p̂�dP (I − P + ιp�)−1 = p̂�dPH

p̂� = p� + p̂�dPH

p̂ = p + H�dP�p̂.

Replacing the expression for p̂ in the last formula we get:

p̂ = p + H�dP�p̂ � p + H�dP�p.

From this:

Ĥ =
(
I − P̂ + ιp̂�

)−1

= (I − P− dP + ι (p� + p̂�dPH))−1

=
(
H−1 + (ιp̂�dPH− dP)

)−1

= H (I + H (ιp̂�dPH− dP))−1

� H (I − H (ιp̂�dPH− dP))
� H (I − H (ιp�dPH− dP))

Then:

�bias (HN ) = −2trĤ− B − 1
2N

� −2trH− B − 1
2N

+
tr
[
H2 (ιp�dPH − dP)

]
N

= bias (HN ) +
tr
[
H2 (ιp�dPH − dP)

]
N

.

This implies that �bias (HN ) − bias (HN ) = OP

(
N−3/2

)
.

G. Error in the Estimation of Bias

We first adapt Lemma A.1 in [93, p. 739] to our case. This
result is a version of Theorem 10 in [46, p. 283], Lemma 2 in
[4, p. 15], and Proposition 1 in [5, p. 825]. It generalizes
these results as it allows for a bandwidth not diverging to ∞,
as required by some recent results (see Theorem 2.1 in [93,
p. 707]). We define:

F (q) :=
1
2π

∞∑
h=−∞

|h|q Π(h).

Lemma 34: Assume AC. Then, Σ̂−Σ = OP

(
S

1/2

N N−1/2
)

.
Proof: We first restate Assumptions A, B and C in [5].

We identify T with N , t with n, θ with p, θ̂ with q, Vt (θ)
with xn − p, Vt

(
θ̂
)

with xn − q.
In order to verify Assumption A in [5, p. 823], we use his

Lemma 1. Our process {x1 − p,x2 − p, . . . } is zero-mean,
fourth-order stationary and bounded. Therefore, we can take
ν = ∞ and it’s enough to require

∑∞
n=1 n2α (n) < ∞, as in

our condition 1 of assumption AC.
Now we consider Assumption B in [5, p. 825]. Assumption

B (i) is verified by an application of Theorem 18.5.4 of [53]
or of [26, p. 67] under

∑∞
n=1 α (n) < ∞. Assumption B

(ii) is trivially true because of the boundedness of xn. For
Assumption B (iii) it is enough to identify (∂/∂θ�)Vt (θ) with
(∂/∂p�) (xn − p) = −I. Assumption B (iv) is true under
condition 3 of assumption AC.

As far as Assumption C (i) in [5, p. 826] is concerned,
this is true by the reasoning reported just after the statement
of his Assumption C. Part (ii) of the assumption is true as(
∂2/∂θ∂θ�

)
Vta (θ) is 0.
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Now we turn to the requirements stated in [93, p. 739]. Con-
ditions 2, 3 and 4 in our result come from Lemma A.1 in [93,
p. 739], respectively, as a statement in the text, as Eq. (A.1),
and as condition (i). We just note that condition (i) is
not needed explicitly in [5] because, when SN → ∞,
S−1

N

∑N−1
j=−N+1 |k (j/SN)| → ∫ |k (x)| dx (see [5, p. 852]).

This is finite by our condition 3 of Assumption AC.
Instead, [93] requires his condition (i) (see [93, p. 744])
because SN may not diverge. As we allow SN to be bounded,
we require it but change its statement. Condition (iii) of
Lemma A.1 in [93, p. 739] is automatically verified as
EVt (θ) (∂/∂θ�)Vt−j (θ) = −EVt (θ) and this is a zero vector.
Condition (ii) of Lemma A.1 in [93, p. 739] is trickier. We first
note that the matrix denoted Ω̂ in that source corresponds to
the matrix Σ̃ defined as:

Σ̃ =
N−1∑

h=−N+1

k

(
h

SN

)
Π̃

(h)

where:

Π̃
(h)

=

{
1
N

∑N
n=h+1 (xn − p) (xn−h − p)� h ≥ 0,

1
N

∑N
n=−h+1 (xn+h − p) (xn − p)� h < 0.

(Note that Π̃
(h)

is similar to Π(h), but the centering is

different.) Now, we have EΠ̃
(h)

= N−h
N Π(h) and:

EΣ̃ = EΠ̃
(0)

+ 2
N−1∑
h=1

k

(
h

SN

)(
1 − h

N

)
Π(h).

This means that:

EΣ̃ − Σ = − 2
N−1∑
h=1

(
1 − k

(
h

SN

))
Π(h)

− 2
N

N−1∑
h=1

k

(
h

SN

)
hΠ(h) − 2

∞∑
h=N

Π(h).

The requirement in [93, Lemma A.1] is that EΣ̃ − Σ =
O
(
S

1/2

N N−1/2
)

. Let γ be a vector with 	γ	L2 = 1.
Let us start from the second term. For q ≥ 1, we have:

1
N

∣∣∣∣∣γ �
{

N−1∑
h=1

k

(
h

SN

)
hΠ(h)

}
γ

∣∣∣∣∣
≤ 1

N

N−1∑
h=1

∣∣∣∣k( h

SN

)∣∣∣∣ h ∥∥∥Π(h)
∥∥∥

L2

≤ 1
N

N−1∑
h=1

h
∥∥∥Π(h)

∥∥∥
L2

≤ 1
N

∞∑
h=1

h
∥∥∥Π(h)

∥∥∥
L2

.

This is automatically O
(
S

1/2

N N−1/2
)

. For q < 1, we use

the fact that |h/N | ≤ |h/N |q for h < N :

1
N

∣∣∣∣∣γ�
{

N−1∑
h=1

k

(
h

SN

)
hΠ(h)

}
γ

∣∣∣∣∣
≤ 1

N

N−1∑
h=1

∣∣∣∣k( h

SN

)∣∣∣∣ h ∥∥∥Π(h)
∥∥∥

L2

≤ N−q
N−1∑
h=1

hq
∥∥∥Π(h)

∥∥∥
L2

.

When q ≥ 1/2, this is automatically O
(
S

1/2

N N−1/2
)

. When

q < 1/2, it requires N 1/2−qS
−1/2

N = O (1).
The last term can be majorized as:∣∣∣∣∣γ �

{ ∞∑
h=N

Π(h)

}
γ

∣∣∣∣∣ ≤
∞∑

h=N

∥∥∥Π(h)
∥∥∥

L2

≤N−q
∞∑

h=N

hq
∥∥∥Π(h)

∥∥∥
L2

.

We need N−q
∑∞

h=N hq
∥∥∥Π(h)

∥∥∥
L2

= O
(
S

1/2

N N−1/2
)

. For

q ≥ 1/2, this is automatically verified. For q < 1/2, it is true
under N 1/2−qS

−1/2

N = O (1).
Now we turn to the first term. If SN �→ ∞ as N → ∞,

we just require it to be O
(
S

1/2

N N−1/2
)

. If SN → ∞ as N →
∞, we can reason as in [46, p. 284] and in [4, pp. A4-A5].
We have:

Sq
N

N−1∑
h=1

(
1 − k

(
h

SN

))
Π(h)

=
N−1∑
h=1

(
1 − k (h/SN )

(h/SN)q − kq

)
hqΠ(h) + kq

N−1∑
h=1

hqΠ(h).

Now, the function defined by 1−k(x)
|x|q for x �= 0 and by

kq for x = 0 is non-negative and bounded by a constant M .
Hence, 1−k(x)

|x|q ≤ M . Let us choose a fixed N0 such that∑∞
h=N0

hq
∥∥∥Π(h)

∥∥∥
L2

≤ ε/ (2M) for ε > 0. Then:∥∥∥∥∥
N−1∑
h=1

(
1 − k (h/SN )

(h/SN)q − kq

)
hqΠ(h)

∥∥∥∥∥
L2

=

∥∥∥∥∥
N0−1∑
h=1

(
1 − k (h/SN)

(h/SN )q − kq

)
hqΠ(h)

+
N−1∑
h=N0

(
1 − k (h/SN)

(h/SN)q − kq

)
hqΠ(h)

∥∥∥∥∥
L2

≤
N0−1∑
h=1

∣∣∣∣1 − k (h/SN )
(h/SN)q − kq

∣∣∣∣ hq
∥∥∥Π(h)

∥∥∥
L2

+
N−1∑
h=N0

∣∣∣∣1 − k (h/SN)
(h/SN)q − kq

∣∣∣∣hq
∥∥∥Π(h)

∥∥∥
L2

≤
N0−1∑
h=1

∣∣∣∣1 − k (h/SN )
(h/SN)q − kq

∣∣∣∣ hq
∥∥∥Π(h)

∥∥∥
L2

+ 2M

N−1∑
h=N0

hq
∥∥∥Π(h)

∥∥∥
L2

� o (1) + ε = o (1)

where the first term is o (1) due to the bounded convergence of
1−k(x)
|x|q −kq to 0 and the second is o (1) due to the arbitrariness
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of ε. When N → ∞,
∑N−1

h=1 hqΠ(h) converges to F(q). As a
result:

− 2
N−1∑
h=1

(
1 − k

(
h

SN

))
Π(h)

= −2S−q
N

N−1∑
h=1

(
1 − k (h/SN)

(h/SN)q − kq

)
hqΠ(h)

− 2kqS
−q
N

N−1∑
h=1

hqΠ(h)

= o
(
S−q

N

)− 2kqS
−q
N F(q).

If kq �= 0, the second term dominates and we need

−2kqS
−q
N F(q) = O

(
S

1/2

N N−1/2
)

. If kq = 0, the condition
boils down to the one for SN �→ ∞.

Proof of Proposition 20: We consider a limited develop-
ment of �bias (HN ) with respect to Σ̂ii and qi respectively
around Σii and pi:

�bias (HN ) =
1

2N

B∑
i=1

Σ̂ii

qi
=

1
2N

B∑
i=1

Σii +
(
Σ̂ii − Σii

)
pi

(
1 + qi−pi

pi

)
� 1

2N

B∑
i=1

Σii +
(
Σ̂ii − Σii

)
pi

·
(

1 − qi − pi

pi
+
(

qi − pi

pi

)2
)

=
1

2N

B∑
i=1

(
Σii

pi
+

Σ̂ii − Σii

pi
− Σii (qi − pi)

p2
i

−
(
Σ̂ii − Σii

)
(qi − pi)

p2
i

+
Σii (qi − pi)

2

p3
i

+

(
Σ̂ii − Σii

)
(qi − pi)

2

p3
i

⎞⎠ .

Now, qi − pi = OP

(
N−1/2

)
and, under AC, Lemma 34

implies that Σ̂ii − Σii = OP

(
(SN/N)

1/2
)

. At last we get:

�bias (HN ) � bias (HN ) + OP

(
S

1/2

N N−3/2
)

. (VII.8)

For the Markov case, we refer to Lemma 33 in
Section VII-F.

Proof of Corollary 22: We only consider the case of
Section IV-A. It is simple to see that:

√
N
(
HN − �bias (HN ) − H∞

)
=

√
N (HN − bias (HN ) − H∞)

+
√

N
(
bias (HN ) − �bias (HN )

)
=

√
N (HN − bias (HN ) − H∞) + OP

(
S

1/2

N N−1
)

and:

N
(
HN − �bias (HN ) − H∞

)
= N (HN − bias (HN ) − H∞)

+ N
(
bias (HN ) − �bias (HN )

)
= N (HN − bias (HN ) − H∞) + OP

(
S

1/2

N N−1/2
)

and, provided SN = o (N), the results of Corollaries 10 and 15
hold.

Proof of Corollary 23: Let us first consider the case when
σ2 > 0. Then, from Proposition 7 it is trivial to see that:

MSE (HN ) = E (HN − H∞)2 = O
(
N−1

)
.

We have:

MSE (HN ) − MSE(HN − bias (HN ))

= E (HN − H∞)2 − E (HN − bias (HN ) − H∞)2

= bias (HN ) (2EHN − bias (HN ) − 2H∞)

� [bias (HN )]2 = O
(
N−2

)
.

At last:

MSE
(
HN − �bias (HN )

)
− MSE(HN − bias (HN ))

= E

(
HN − �bias (HN) − H∞

)2

− E (HN − bias (HN ) − H∞)2

= E

(
bias (HN ) − �bias (HN )

)
·
(
2HN − �bias (HN ) − bias (HN ) − 2H∞

)
= O

([
E

(
bias (HN ) − �bias (HN )

)2
]1/2

·
[
E

((
HN − �bias (HN ) − H∞

)
+ (HN − bias (HN ) − H∞))2

]1/2
)

= O

([
E

(
bias (HN ) − �bias (HN )

)2
]1/2

·
[
2
(

E

(
HN − �bias (HN ) − H∞

)2

+ E (HN − bias (HN) − H∞)2
)]1/2

)
= O

(
S

1/2

N N−2
)

where the third step comes from Cauchy-Schwarz inequality,
the fourth from the inequality (a + b)2 ≤ 2

(
a2 + b2

)
, and the

fifth from Proposition 20 and Corollaries 10 and 22.
When σ2 = 0, from Proposition 11:

MSE (HN ) = E (HN − H∞)2 = O
(
N−2

)
.

The formula for MSE (HN ) − MSE(HN − bias (HN ))
remains unchanged. The formula for
MSE

(
HN − �bias (HN )

)
− MSE(HN − bias (HN ))

becomes:

MSE
(
HN − �bias (HN )

)
− MSE(HN − bias (HN ))

= O

([
E

(
bias (HN ) − �bias (HN )

)2
]1/2

·
[
E

((
HN − �bias (HN ) − H∞

)
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+ (HN − bias (HN ) − H∞))2
]1/2
)

= O
(
S

1/2

N N−5/2
)

if Corollary 10 is replaced by Corollary 15.

H. Error in the Estimation of the Distribution Under
Degeneracy

Proof of Proposition 25: Suppose that the matrix Ω is
estimated through Ω̂, where Ω̂ − Ω = oP (1). This means
that we will replace the distribution of

∑B
i=1 λiχ

2
1,i by the

distribution of
∑B

i=1 λ̂iχ
2
1,i. We would like to characterize the

error in this replacement through a bound on:∥∥∥F�B
i=1 λ̂iχ2

1,i
− F�B

i=1 λiχ2
1,i

∥∥∥
∞

.

The eigenvalues of both Ω and Ω̂ are non-negative as both
of them are variance matrices. Let B� be the number of
non-zero eigenvalues of Σ�, so that λB� > 0. We need to
differentiate the case B� = 1 from the case B� > 1.

By the Wielandt-Hoffman inequality (see [60, p. 126]), we
have: ∣∣∣λi − λ̂i

∣∣∣ ≤ ∥∥∥Ω̂− Ω
∥∥∥

1
, i = 1, . . . , B

and therefore
∣∣∣λB� − λ̂B�

∣∣∣ ≤
∥∥∥Ω̂ − Ω

∥∥∥
1

or λB� −∥∥∥Ω̂ − Ω
∥∥∥

1
≤ λ̂B� . As

∥∥∥Ω̂ − Ω
∥∥∥

1
= oP (1), for N large

enough, λ̂B� > 0, so that the two matrices have ultimately
the same rank.

We start from the case B� > 1. We define λ =
(λ1, . . . , λB), λ̂ =

(
λ̂1, . . . , λ̂B

)
, Λ = dg (λ) and Λ̂ =

dg
(
λ̂
)

. The techniques in [22], [106] do not work directly
here, as they require part of the eigenvalues to coincide.
However, we can write:∥∥∥F�B

i=1 λ̂iχ2
1,i

− F�B
i=1 λiχ2

1,i

∥∥∥
∞

= sup
x≥0

∣∣∣∣∣P
{

B∑
i=1

λ̂iχ
2
1,i ≤ x

}
− P

{
B∑

i=1

λiχ
2
1,i ≤ x

}∣∣∣∣∣
= sup

x≥0

∣∣∣∣P{∥∥∥N (
0, Λ̂

)∥∥∥
L2

≤ √
x

}
− P

{	N (0,Λ)	L2
≤ √

x
}

.
∣∣

We use Theorem 1 in [78]:

sup
x≥0

∣∣∣∣P{∥∥∥N (
0, Λ̂

)∥∥∥
L2

≤ x

}
− P

{	N (0,Λ)	L2
≤ x

}∣∣∣∣
≤ C ·

⎧⎨⎩
(

B∑
i=1

λ2
i ·

B∑
i=2

λ2
i

)−1/4

+

(
B∑

i=1

λ̂2
i ·

B∑
i=2

λ̂2
i

)−1/4
⎫⎬⎭

·
B∑

i=1

∣∣∣λi − λ̂i

∣∣∣
for an absolute constant C > 0. By the Wielandt-Hoffman
inequality (see [60, p. 126]),

∑B
i=1

∣∣∣λi − λ̂i

∣∣∣ ≤ ∥∥∥Ω̂− Ω
∥∥∥

1
.

Now, Ω̂ − Ω = oP (1) implies that also λ̂i − λi = oP (1), so
that, for N large enough:

∥∥∥F�B
i=1 λ̂iχ2

1,i
−F�B

i=1 λiχ2
1,i

∥∥∥
∞
≤C

∥∥∥Ω̂ − Ω
∥∥∥

1(∑B
i=1 λ2

i ·∑B
i=2 λ2

i

)1/4

where the constant C is here different from the one seen above.
When B� = 1, we have:∥∥∥Fλ̂1χ2

1
− Fλ1χ2

1

∥∥∥
∞

= sup
x

∣∣∣P{λ̂1χ
2
1 ≤ x

}
− P

{
λ1χ

2
1 ≤ x

}∣∣∣
= sup

x

∣∣∣P{∣∣∣λ̂1/2

1 Z
∣∣∣ ≤ x

}
− P

{∣∣∣λ1/2

1 Z
∣∣∣ ≤ x

}∣∣∣
= sup

x

∣∣∣P{λ̂
1/2

1 Z ≤ x
}
− P

{
λ̂

1/2

1 Z ≤ −x
}

− P

{
λ

1/2

1 Z ≤ x
}

+ P

{
λ

1/2

1 Z ≤ −x
}∣∣∣

≤ 2 sup
x>0

∣∣∣Φ (x) − Φ
(
λ̂

1/2

1 λ
−1/2

1 x
)∣∣∣ .

We are only interested in the case in which λ̂
1/2

1 λ
−1/2

1 � 1,
therefore we write λ̂

1/2

1 λ
−1/2

1 = 1 + ε and we get:

Φ (x) − Φ
(
λ̂

1/2

1 λ
−1/2

1 x
)

= Φ (x) − Φ ((1 + ε)x) � φ (x) xε.

This implies that
∣∣∣Φ (x) − Φ

(
λ̂

1/2

1 λ
−1/2

1 x
)∣∣∣ �

supx∈R |φ (x)x| · |ε| ≤ C |ε| (where C can be taken equal
to or larger than supx∈R |φ (x) x| = 1/

√
2πe

.= 0.2419707).
Therefore:∥∥∥Fλ̂1χ2

1
−Fλ1χ2

1

∥∥∥
∞

� 2C

∣∣∣∣∣∣ λ̂1 − λ1

λ
1/2

1

(
λ̂

1/2

1 +λ
1/2

1

)
∣∣∣∣∣∣�C

∣∣∣∣∣ λ̂1 − λ1

λ1

∣∣∣∣∣ .
In this case too,

∥∥∥F�B
i=1 λ̂iχ2

1,i
− F�B

i=1 λiχ2
1,i

∥∥∥
∞

=

O
(∥∥∥Ω̂− Ω

∥∥∥
1

)
.

The final part of the statement comes from the results in
Lemma A.1 in [93] under assumption AC.

APPENDIX

Consider an iid standard Gaussian sequence {y1, y2, . . . }
and a standard Gaussian random variable z independent of
the previous sequence. Then we define:

x̃i = βz +
(
1 − β2

)1/2
yi.

As above, the dichotomized process is based on the signs
of the original process:

xi = 1 + 1 {x̃i ≥ 0} .

It is clear that:

p1 = P {xi = 1} = P {x̃i < 0} = 1/2

p2 = 1 − p1 = 1/2.

However, Cov (x̃1, x̃h+1) =
Cov

(
βz +

(
1 − β2

)1/2
y1, βz +

(
1 − β2

)1/2
yh+1

)
= β2.

From [114, p. 189], we have:

p
(h)
22 = p

(h)
11 = 1/4 + 1/2π arcsin

(
β2
)
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Fig. 10. Ensemble and time averages of the entropy in the non-ergodic
case: on the left plot, 50 trajectories of HN as a function of N (light grey
jigsaw lines), EH∞ (dark grey horizontal line), EHN (dark grey curved line),
vertical lines at N ∈ {25, 50, 100, 200} (respectively black dashed, dotted,
dash-dot, long dashed lines); on the right plot, empirical cdf of HN with
N = 25 (black dashed line), N = 50 (black dotted line), N = 100 (black
dash-dot line), N = 200 (black long dashed line) and N = ∞ (black solid
line).

p
(h)
12 = p

(h)
21 = 1/2 − p

(h)
22 .

In this case, the process {x̃1, x̃2, . . . } is stationary but non-
ergodic (see, e.g., Example 13.9 in [25, p. 196]), and so is
{x1, x2, . . . }. Therefore:

q1 =
n1

N
=

∑N
j=1 1 {xj = 1}

N
=

∑N
j=1 1 {x̃j < 0}

N

=

∑N
j=1 1

{
yi < − β

(1−β2)
1/2 z

}
N

→ Φ

(
− β

(1 − β2)
1/2

z

)
P − as.

Note that z is an invariant random variable. At last the limit
of the observed entropy is:

H∞ = − Φ

(
− β

(1 − β2)
1/2

z

)
ln Φ

(
− β

(1 − β2)
1/2

z

)

− Φ

(
β

(1 − β2)
1/2

z

)
ln Φ

(
β

(1 − β2)
1/2

z

)
.

In Figure 10 we show what is the behavior of the statistic
in this case. The grey jigsaw lines represent some trajectories
of HN , while the dark grey curved line represents EHN

(based on 250,000 samples) and the dark grey horizontal line
represents EH∞. On the right plot, we display the empirical
cdf of HN with N = 25 (black dashed line), N = 50 (black
dotted line), N = 100 (black dash-dot line), N = 200 (black

long dash line). The black solid line represents the empirical
cdf of H∞. In the non-ergodic case HN converges (almost
surely) to the random variable H∞.

In this case, H∞ �= EH∞. The first quantity has been
obtained above. The second one is given by:

EH∞ = − E

{
Φ

(
− β

(1 − β2)
1/2

z

)
ln Φ

(
− β

(1 − β2)
1/2

z

)}

+ E

{
Φ

(
β

(1 − β2)
1/2

z

)
ln Φ

(
β

(1 − β2)
1/2

z

)}

= − 2E

{
Φ

(
β

(1 − β2)
1/2

z

)
ln Φ

(
β

(1 − β2)
1/2

z

)}
.

The first-order bias correction of EHN takes the form:

− B − 1
2N

− 1
N

B∑
i=1

∑N−1
h=1

(
p
(h)
i − p2

i

)
pi

= − 1
2N

− 2 (N − 1)
πN

arcsin
(
β2
)

= O (1) .

Note that, while the first-order bias correction reduces
the bias in the estimation of EH∞ through EHN , nothing
guarantees that this reduces the bias in the estimation of H∞
through HN .
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