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Under general conditions, the asymptotic distribution of degenerate second-order U - and 
V -statistics is an (infinite) weighted sum of χ2 random variables whose weights are the 
eigenvalues of an integral operator associated with the kernel of the statistic. Also the 
behavior of the statistic in terms of power can be characterized through the eigenvalues 
and the eigenfunctions of the same integral operator. No general algorithm seems to 
be available to compute these quantities starting from the kernel of the statistic. An 
algorithm is proposed to approximate (as precisely as needed) the asymptotic distribution 
and to build several measures of performance for tests based on U - and V -statistics. The 
algorithm uses the Wielandt–Nyström method of approximation of an integral operator 
based on quadrature, and can be used with several methods of numerical integration. An 
extensive numerical study shows that the Wielandt–Nyström method based on Clenshaw–
Curtis quadrature performs very well both for the eigenvalues and the eigenfunctions.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Distributions given by weighted sums of χ2 random variables arise in many situations such as χ2 tests with estimated 
parameters (see van der Vaart, 1998, p. 249) or non-standard normalizations (see Colombi, 2020), the likelihood ratio 
and variance statistics in Vuong (1989), the test for the rank of a matrix in Robin and Smith (2000) and the asymptotic 
distribution of the entropy in Seri and Martinoli (2021). The most prominent one, however, is the asymptotic distribution 
of degenerate second-order U - and V -statistics that is, in general, an (infinite) weighted sum of χ2 random variables. The 
eigenvalues and the eigenfunctions of an integral operator play a central role in the asymptotic distribution and power of the 
statistics. An algorithm, preliminarily studied in Seri and Choirat (2012), is provided for the numerical approximation of the 
eigenvalues and of the eigenfunctions of this operator, and of the cumulative distribution function (cdf) of the asymptotic 
distribution. The algorithm can also be used to approximate (as precisely as needed) the asymptotic power of the test 
statistics and to build several measures of performance for tests based on U - and V -statistics. Since the explicit identification 
of the eigenfunctions is a very difficult task, these methods can be used to approximate the eigenfunctions and to identify 
them with known functions; after these steps, verifying that they respect the integral equation is usually much simpler.

The results cover the one-dimensional case. Moreover, only kernels defined on a bounded interval (that will in most 
cases be reduced to [0,1]) will be considered. The more general case of infinite intervals can be obtained through the 
application of the probability integral transform.
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Special cases of the algorithm have already been proposed in the statistical literature. A first instance is in Schilling 
(1983b, p. 23), who proposes a version of this algorithm in the case of a nearest-neighbor goodness-of-fit test and evaluates 
its accuracy by comparing the theoretical moments of the asymptotic distribution with those of the resulting approximated 
statistic. In Csörgő (1986, p. 719), the author suggests the use of the same algorithm of Schilling (1983b) for another test 
statistic. In Koltchinskii and Giné (2000), the authors propose to approximate the spectrum of an integral operator using the 
evaluations of the kernel on a random sample of independent points. In Choirat and Seri (2006), random points are replaced 
by quasi-Monte Carlo points, while in Adamczak and Bednorz (2015) they are replaced by realizations of a Markov chain.

The methods proposed in these papers consist in approximating the integral appearing in the integral operator through a 
sum over a finite set of points. However, the performance of this method can be greatly improved if the contribution of the 
points to the sum is allowed to be multiplied by a weight, that is if the sum is replaced by a weighted sum. The procedure 
is often used in Numerical Analysis under the name of Wielandt–Nyström method for the approximation of the eigenvalues 
and eigenfunctions of an integral operator. In this context the technique is often applied using Gauss–Legendre quadrature: 
in Delves and Mohamed (1985, pp. 245-246), it is stated that “such results are enough to make a numerical analyst weep.” 
One of the aims of the present paper is to show that this would not be the case for a statistician since Gauss–Legendre 
quadrature is not the best possible choice.

In particular, several methods of integration (namely Monte Carlo integration, quasi-Monte Carlo integration through the 
Halton or van der Corput sequence, the trapezium rule, and Gauss–Legendre and Clenshaw–Curtis quadrature rules) are 
compared. Monte Carlo integration performs very poorly as expected by the bounds in Koltchinskii and Giné (2000, Section 
4). Quasi-Monte Carlo integration performs better, especially as concerns eigenvalues but shows some strange behavior 
when it comes to the computation of eigenfunctions. But the most interesting result concerns the comparison of Gauss–
Legendre and Clenshaw–Curtis quadrature rules: it is usually stated in the literature that Gauss–Legendre integration has a 
factor-of-2 advantage for finite N , since the (N + 1)-point Gauss–Legendre quadrature rule integrates exactly polynomials 
of degree 2N + 1 while the (N + 1)-point Clenshaw–Curtis quadrature rule only integrates exactly polynomials of degree N . 
However, this difference is rarely observed in practice: see Trefethen (2008) and Xiang and Bornemann (2012) for historical 
reviews of the literature about this fact and theoretical explanations. On the other hand, Clenshaw–Curtis quadrature has 
an edge on Gauss–Legendre quadrature from a computational point of view since the N-point Clenshaw–Curtis formula can 
be implemented in O  (N ln N) operations through the Fast Fourier Transform, while the N-point Gauss–Legendre formula 
requires O  

(
N2
)

operations by solving a tridiagonal eigenvalue problem, or O  
(
N3
)

when the tridiagonal structure of the 
eigenvalue problem is neglected; see Trefethen (2008) for more details on this point.

Therefore, the computational study provides a further case in which Gauss–Legendre and Clenshaw–Curtis quadrature 
rules behave in very similar ways. Some heuristic reasonings about theoretical convergence rates but no formal proof are 
provided, since the problem is often complicated by the presence of a discontinuity along the diagonal of the kernel (so 
that the kernel does not even belong to C1).

Section 2 briefly reviews some asymptotic results for degenerate U - and V -statistics involving quantities that can be 
computed using the algorithm described in Section 3. The convergence properties of the algorithm are evaluated both 
theoretically, in Section 4, and empirically, in Section 5, through the systematic application to three well known V -statistics, 
namely the Watson, Cramér–von Mises and Anderson–Darling test statistics. In the same section, the method is applied to a 
statistic proposed in Hall (1985) and to a class of statistics described in Bickel and Breiman (1983) and Schilling (1983a,b). 
Section 6 concludes the paper. A description of the algorithm for the computation of the cdf and the proofs of the results 
of the paper are contained in Appendix A.

2. Asymptotic results for degenerate U - and V -statistics

Let (X1, . . . , Xn) be an independent and identically distributed (iid) sample from the probability P defined on the mea-
surable space (X,B (X)). The V - or von Mises statistic is defined as:

Vn = 1

n2

n∑
k,�=1

h (xk, x�)

and the U -statistic as:

Un = 1

n (n − 1)

n∑
k �=�=1

h (xk, x�)

where h : X × X → R (or, more rarely, C) is called the kernel of the statistic. There is no loss of generality in taking h
symmetric, i.e. h (xk, x�) = h (x�, xk), as otherwise one could set h̃ (xk, x�) = h(xk,x�)+h(x�,xk)

2 . The name of quadratic statistics
(see, e.g., Gregory, 1980) is sometimes used to indicate both U - and V -statistics. The present results do not cover higher-
order statistics such as, e.g., Vn = 1

n3

∑n
k,�,m=1 h (xk, x�, xm).

The asymptotic behavior of these statistics is different if h respects the following condition, called degeneracy and as-
sumed throughout the rest of the paper, or if it does not:
2
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(H) E(�)h (xk, X�) =E(k,�)h (Xk, X�) = 0, for k �= � and P -almost any xk .

The notation E(�)h (xk, X�) denotes that the expectation is taken with respect to the distribution of X� . The condition 
E(k,�)h (Xk, X�) = 0 is often verified for the statistics considered here, but it can otherwise be obtained by centering.

The asymptotic distribution for degenerate U - and V -statistics has been worked out by von Mises (1947), Filippova 
(1962), Gregory (1977), Serfling (1980) and in greater generality by Rubin and Vitale (1980), Denker (1982), Chen and 
White (1998), Dewan and Prakasa Rao (2001, 2002). In order to characterize the asymptotic distribution, some properties of 
the integral operator H defined by:

Hφ (x) =
∫

h (x, y)φ (y)P (dy) (1)

are needed. The kernel is said to be Hermitian if h (x, y) = h (y, x). The operator H is said to be Hilbert–Schmidt if ∫∫ |h (x, y)|2 P (dx)P (dy) < ∞, and self-adjoint if it is Hilbert–Schmidt and if the kernel is Hermitian.
If the operator is self-adjoint, from Exercise 44 on p. 1083 and Exercise 56 on p. 1087 in Dunford and Schwartz (1963), 

the following spectral decomposition of the kernel h holds:

h (x, y) =
∞∑
j=1

λ jφ j (x)φ j (y) (2)

where 
(
λ j
)

j are the real eigenvalues and 
(
φ j
)

j are the orthonormal eigenfunctions of the operator H. In most cases, the 
kernel assumes real values, is symmetric, i.e. h (x, y) = h (y, x), and positive semidefinite, i.e. 

∑N
k,�=1 h (yk, y�) wk w� ≥ 0 for 

all finite sequences of points (yk)k=1,...,N and weights (wk)k=1,...,N . In this case, the eigenvalues are non-negative, i.e. λ j ≥ 0
for any j. However, when possible, the results will be stated for the more general case in which the kernel is not necessarily 
positive semidefinite.

The distribution can be obtained under degeneracy and mild additional assumptions, namely E |h (X1, X2)|2 < ∞ for 
U -statistics, and E |h (X1, X2)|2 < ∞ and E |h (X1, X1)| < ∞ for V -statistics. It is possible to show that U - and V -statistics 
have asymptotic distributions that are weighted (infinite) sums of χ2 random variables:

nUn
D−→∑∞

j=1 λ j

(
Z 2

j − 1
)

,

nVn
D−→∑∞

j=1 λ j Z 2
j ,

(3)

where 
(

Z j
)

j are independent standard normal random variables (see, e.g., Theorem on p. 194 in Serfling, 1980, and Theorem 
12.10 on p. 169 in van der Vaart, 1998, for U -statistics, and Theorem 2.3 in Gregory, 1977, with hn ≡ 0, for V -statistics).

As an example, consider the Cramér–von Mises statistic for the hypothesis that a sample is extracted from a distribution 
with continuous cdf F on R. Let Fn be the empirical cdf based on the sample (X1, . . . , Xn). The Cramér–von Mises statistic 
is defined as:

Vn =
+∞∫

−∞
(Fn (x) − F (x))2 F (dx)

= 1

n2

n∑
i, j=1

(
F 2 (Xi)

2
+ F 2

(
X j
)

2
− F (Xi) ∨ F

(
X j
)+ 1

3

)
.

Under the null hypothesis, the sample (F (X1) , . . . , F (Xn)) is independently and uniformly distributed and, therefore, the 
distribution can be reduced to the one of:

Vn = 1

n2

n∑
i, j=1

(
U 2

i

2
+ U 2

j

2
− Ui ∨ U j + 1

3

)

where (U1, . . . , Un) is an independently and uniformly distributed sample. The asymptotic distribution (see, e.g., Serfling, 
1980, p. 64 or van der Vaart, 1998, pp. 170-171) is:

nVn
D−→

∞∑
j=1

Z 2
j

j2π2
.

Now, the asymptotic distribution of Vn under a Pitman drift (see Gregory, 1977, Theorems 2.1 and 2.3) will be considered. 
The objective is to study the behavior of the test statistic under the probability measure P ∗

n where dP∗
n = 1 + n− 1

2 gn , for 
dP

3
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a sequence (gn)n ∈ L2
(
�,A,P

)
converging to g ∈ L2

(
�,A,P

)
and P the probability measure such that the kernel h is 

degenerate under it. Then, if E |h (X1, X2)|2 < ∞ and E |h (X1, X1)| < ∞:

nVn
D−→

∞∑
j=1

λ j
(

Z j + a j
)2

,

where 
(

Z j
)

j are independent standard normal random variables and a j = ∫ gφ jdP , for j ≥ 1. This shows that the eigen-
functions of H play a very important role in the determination of the power of quadratic statistics. It is easy to see, using 
orthonormality of the 

(
φ j
)

j , that the coefficients 
(
a j
)

j are the same as in the expansion g =∑∞
j=1 a jφ j .

In Gregory (1977, p. 120), a simple index of performance for a test based on U - and V -statistics is introduced:

eh =
∑

λ ja2
j(

2
∑

λ2
j

) 1
2

.

In general, the ratio of these indexes for two tests is the true asymptotic relative efficiency, that is the limit of the ratio of 
sample sizes that gives the same limit of the power for the two tests. Other measures of efficiency are discussed in Gregory 
(1980, pp. 121 ff.): in particular, it is worthwhile to remark condition (3.12) (b) on p. 126, in which optimality of a quadratic 
test with respect to Bahadur efficiency is shown to be equivalent to the fact that the eigenfunction corresponding to the 
largest eigenvalue is proportional to a certain function h0.

The eigenfunctions help characterize the behavior of the statistic also under a fixed alternative of the form dP∗
dP =

1 +∑∞
j=1 a jφ j , as shown in Hall (1985, p. 129) (note that Un and Vn are non-degenerate quadratic statistics with respect to 

P ∗). In this case, if the eigenvalues 
(
λ j
)

j are positive and λ1 ≥ λ j > 0 for any j, it can be shown that 
∑

λ ja
2
j

λ1
is a measure 

of efficiency of quadratic statistics.
The role of the eigenfunctions in determining power is the basis for the theory of the components of quadratic statistics 

started, for the Cramér–von Mises statistic, in Durbin and Knott (1972) and Durbin et al. (1975, 1977). The authors express 
this statistic as a functional of an empirical process and not as a V -statistic, but their reasoning can be extended to a 
general V -statistic. If the eigenvalues 

(
λ j
)

j are non-negative and the kernel h of a V -statistic is replaced with its spectral 
decomposition (2), nVn can be written as:

nVn = 1

n

n∑
k,�=1

h (xk, x�) = 1

n

n∑
k,�=1

∞∑
j=1

λ jφ j (xk)φ j (x�)

= 1

n

∞∑
j=1

λ j

n∑
k=1

φ j (xk)

n∑
�=1

φ j (x�)

=
∞∑
j=1

[
1√
n

n∑
k=1

√
λ jφ j (xk)

]2

.

Any term 1√
n

∑n
k=1

√
λ jφ j (xk) is a component of the V -statistic. Each component accounts for a contribution to the distance 

between the sample and the null hypothesis and a contribution to the power of the statistic against an alternative hypothe-
sis. Schoenfeld (1977) develops a theory of asymptotically most powerful tests against a sequence of alternative hypotheses 
converging to the null. These tests are given by linear combinations of the previously quoted components and are there-
fore asymptotically normal. Parr and Schucany (1982) establish a link between efficiency and robustness on one side and 
components of minimum distance objective functions on the other. Also the results about asymptotic power of tests based 
on U -statistics in Hall (1985) exploit the decomposition of the kernel in eigenvalues and eigenfunctions and of the statistic 
in components. The eigenfunctions can also be used to derive smooth goodness-of-fit tests as in Neyman (1937), see also 
Durbin and Knott (1972, p. 302).

The previous discussion points at the interest of eigenvalues and eigenfunctions of H in establishing the asymptotic 
distribution and power of a quadratic statistic. The methods presented here can be used to derive the components of a 
generic quadratic statistic and to extend the analysis beyond the cases in which the eigenfunctions are explicitly known.

3. The algorithm

In this section the algorithm for the approximation of the eigenvalues and the eigenfunctions of the integral operator is 
described.

First, the integral operator H of equation (1) is replaced by an approximate one (say HN ) yielding N eigenvalues (
λ̂N, j

)
: this induces two sources of errors, namely the neglection of the smallest eigenvalues (i.e. 

(
λ j
)

j=N+1,...
) 
j=1,...,N

4
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and the numerical approximation of the leading N ones. This step also provides approximations to the eigenfunctions of the 
integral operator. This is explained in Section 3.1.

Second, if the objective is to derive the cdf, the distribution of 
∑∞

j=1 λ j Z 2
j can be replaced by the distribution of ∑N

j=1 λ̂N, j Z 2
j , where 

(
Z j
)

j are independent standard normal random variables. If the weights 
(
λ j
)

j and 
(
λ̂N, j

)
j

are non-

negative, it can be shown (see Appendix A.1) that:

sup
x≥0

∣∣∣∣∣∣P
⎛⎝ N∑

j=1

λ̂N, j Z 2
j ≤ x

⎞⎠− P

⎛⎝ ∞∑
j=1

λ j Z 2
j ≤ x

⎞⎠∣∣∣∣∣∣= O

⎛⎝ ∞∑
j=1

∣∣∣λ̂N, j − λ j

∣∣∣
⎞⎠ (4)

where λ̂N, j is set to 0 for j > N . Convergence to zero of the right-hand side is the condition under which the algorithm 
provides a uniform approximation to the cdf of 

∑∞
j=1 λ j Z 2

j .

Now, 
∑N

j=1 λ̂N, j Z 2
j is a quadratic form in normal random vectors. Indeed, setting Z := (Z1, · · · , Z N)′ and �̂N :=

dg
(
λ̂N,1, · · · , λ̂N,N

)
(dg (v) is the matrix having v on its diagonal and 0’s elsewhere), it follows that 

∑N
j=1 λ̂N, j Z 2

j =
Z′�̂N Z. The quantiles of the distribution can be obtained using a root finding algorithm, as solutions of the equation 
P
(∑N

j=1 λ̂N, j Z 2
j ≤ x

)
= p. In particular, even a simple algorithm such as the bisection method appears in this case to 

be a good choice. This is discussed in Appendix A.1.
In the following, it will be shown how the first step, that is the replacement of the integral operator through an approx-

imate one, can be performed with the so-called Wielandt–Nyström method, by using different quadrature rules that can be 
more or less suited to the computation of eigenfunctions and eigenvalues.

3.1. The Wielandt–Nyström method

In this section, the Wielandt–Nyström method for a kernel h (·, ·) defined on [0,1] × [0,1] is presented. The method 
extends with minor modifications to the case in which [0,1] is replaced by a more general set. Moreover, the probability P
is supposed to be the uniform distribution, a fact that can generally be obtained through the probability integral transform.

Consider the operator H defined as:

Hφ (x) =
1∫

0

h (x, y)φ (y)dy, (5)

for x ∈ [0,1], φ ∈ L2. Let 
(
λ j
)

j and 
(
φ j
)

j be respectively the eigenvalues and eigenfunctions of the operator, whose existence 
is guaranteed under the conditions leading to (2).

The Wielandt–Nyström method replaces the integral with an approximate one using a quadrature rule given by the 
sequence of nodes 

(
yN,k

)
k=1,...,N and weights 

(
w N,k

)
k=1,...,N . To ease the notation, the subscript N will be omitted and 

(yk)k=1,...,N and (wk)k=1,...,N will be used instead of 
(

yN,k
)

k=1,...,N and 
(

w N,k
)

k=1,...,N . All the quadrature rules considered 
are such that wk ≥ 0 for k = 1, . . . , N and 

∑N
k=1 wk = 1, the length of the interval [0,1].

Then, the integral operator H of (5) is replaced by the approximate one given by:

HNφ (x) =
N∑

k=1

h (x, yk)φ (yk) wk.

One can solve the equation λφ (x) =HNφ (x) through the linear system:

λφ (yi) = HNφ (yi) =
N∑

k=1

h (yi, yk)φ (yk) wk,

where yi ∈ (yk)k=1,...,N . Thus one can get N eigenvalues by solving the matricial eigenvalue problem det
(
λIN − H̃N

)
where 

H̃N has generic element h̃ik,N = h (yi, yk) wk and IN is the identity matrix of size N . To exploit the greater precision of 
eigenvalue computations in the symmetric case, a new matrix DN = dg (w1, . . . , w N) is introduced and, instead of the 
non-symmetric H̃N , one considers the alternative eigenvalue problem:

det

(
λIN − D

1
2
N H̃N D

− 1
2

N

)
= det (λIN − HN)

where A
1
2 is a square root of A and A− 1

2 is its inverse. The spectra of H̃N and HN coincide but the replacement improves the 
performance of the numerical procedure as now HN is symmetric with generic element given by hik,N = h (yi, yk)

√
wi wk .
5
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The possibility of setting the diagonal of the matrix HN to zero, as in Koltchinskii and Giné (2000, Eq. (1.3)), has also been 
considered. In a manner similar to what happens with the asymptotic theory of quadratic statistics, this choice provides 
results under less restrictive assumptions (see Koltchinskii and Giné, 2000, p. 123, after Corollary 3.3) but this seems to 
worsen the error in the computation of the eigenvalues and eigenfunctions. In any case, in Appendix A.3 it is shown that 
the L2-distance of the spectra between the case when the diagonal is set of zero and when it is not is usually O  

(
N− 1

2

)
(or 

OP

(
N− 1

2

)
for the Monte Carlo method).

The set of eigenvalues 
(
λ̂N, j

)
j=1,...,N

of the matrix HN approximates the first N eigenvalues 
(
λ j
)

j=1,...,N of H. If φ̂N, j

is the j-th right eigenvector of HN , the j-th right eigenvector of H̃N is given by φ̃N, j = D
− 1

2
N φ̂N, j . Indeed, it is sufficient to 

premultiply 
(
λ̂N, jIN − H̃N

)
φ̃N, j = 0 by D

1
2
N and use HN = D

1
2
N H̃N D

− 1
2

N to get 
(
λ̂N, jIN − HN

)
D

1
2
N φ̃N, j = 0, from which φ̂N, j =

D
1
2
N φ̃N, j and φ̃N, j = D

− 1
2

N φ̂N, j .
If [x]k denotes the k-th element of the vector x, the eigenfunctions can then be computed using the so-called Nyström 

extension or interpolation formula:

φ̂N, j (x) = 1

λ̂N, j

N∑
k=1

h (x, yk) wk
[
φ̃N, j

]
k
. (6)

As φ̂N, j (yk) = [φ̃N, j

]
k
, the formula provides a function passing through the points 

(
yk,
[
φ̃N, j

]
k

)
k=1,...,N

, hence the name 
interpolation, but it extends the function to other values of x, hence the name extension.

A reminder of the relevant formulas is provided in Algorithm 1. In the following, some hints about the computational 
complexity of each step in terms of operations, i.e. in the real-number model of computation, are provided. The real-number 
model describes a situation in which algebraic operations, namely addition, subtraction, multiplication, division, raising to 
fractional powers, as well as comparisons between numbers, are performed with infinite precision at unit cost. This is 
called algebraic complexity in Borwein and Borwein (1988, p. 591). The complexity of the different steps can be described 
as follows:

• The computational complexity of the determination of nodes and weights depends on the choice of the quadrature rule. 
As an example, the N-point Clenshaw–Curtis formula can be implemented in O  (N ln N) operations through the Fast 
Fourier Transform. The N-point Gauss–Legendre formula requires O  

(
N2
)

operations by solving a tridiagonal eigenvalue 
problem, or O  

(
N3
)

when the tridiagonal structure of the eigenvalue problem is neglected (see Trefethen, 2008).
• If the kernel h contains only algebraic operations, populating the matrix HN takes O  

(
N2
)

operations. If the kernel 
h contains non-algebraic functions, the computational complexity of these functions must be accounted for. As an 
example, the Anderson–Darling kernel contains a logarithm that can be evaluated with error ε in O  (|lnε|) operations, 
therefore, populating the matrix requires O  

(
N2 |lnε|) operations.

• Computing the eigendecomposition can be performed as fast as matrix multiplication (see Pan and Chen, 1999 and 
Demmel et al., 2007), i.e. through O  

(
Nω+η

)
operations for any η > 0, where the best value of ω is unknown, but is 

larger than or equal to 2. The fastest known algorithm (see Alman and Vassilevska Williams, 2021) has ω < 2.3728596
but is not used in practice. Other algorithms have ω = log2 7 (Strassen algorithm) or ω = 3. Therefore, this step takes at 
most O  

(
N3+η

)
operations for any η > 0.

• The computation of the Nyström extension formula require O  (N) operations per value of x and per eigenfunction. If 
the kernel h contains non-algebraic functions, this should be accounted for as above.

• At last, the computational complexity of the Davies algorithm is very difficult to characterize.

This implies that, apart from the Davies algorithm, the overall complexity is dictated by the construction of the quadrature 
rule and by the eigendecomposition, and is O  

(
Nω+η

)
, for 2 ≤ ω ≤ 3 and any η > 0. If raising to fractional powers is 

excluded from the list of operations with unit cost, the relevant concept of complexity is rational complexity (see Borwein 
and Borwein, 1988, p. 591). In this case, the computation of 

√
wk and 

√
wi wk , as in steps 2 and 5 of Algorithm 1, with 

error ε requires O  (|lnε|) operations.
The choice of the nodes 

(
y j
)

j=1,...,N and the weights 
(

w j
)

j=1,...,N depends on the objective of the analysis and on the 
characteristics of the kernel h. For kernels defined on [0,1] × [0,1] or on R ×R, Gaussian quadrature rules are the most 
common choice; see Press et al. (2002, Chapter 18) or Atkinson (1976). The reason is that the convergence rate of Gaussian 
quadrature is exponential or super-exponential.

However, as shown below, Gaussian quadrature is not always the optimal choice for statistical applications.
A first possible choice is to use Monte Carlo sampling: this is advocated by Koltchinskii and Giné (2000) for the compu-

tation of the eigenvalues of an integral operator, but the objective of that paper is intrinsically different from the one of this 
paper (see also Adamczak and Bednorz, 2015, where iid points are replaced by a realization of a Markov chain). However, 
as shown in the following, Monte Carlo has quite bad convergence properties.
6
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Algorithm 1: Wielandt–Nyström algorithm and computation of the cdf.
Input: h (·, ·)
Output:

(
λ̂N, j

)
j=1,...,N

, 
(
φ̂N, j (·)

)
j=1,...,N

1 Generate the nodes (yk)k=1,...,N and weights (wk)k=1,...,N of the quadrature rule
2 Populate the matrix HN with (i, j)-element hik,N = h (yi , yk)

√
wi wk

3 Compute the eigenvalues 
(
λ̂N, j

)
j=1,...,N

of HN

4 Compute the normalized eigenvectors φ̂N, j of HN

5 For each j and for x ∈ [0,1], compute the eigenfunction φ̂N, j (x) = 1
λ̂N, j

∑N
k=1 h (x, yk)

√
wk

[
φ̂N, j

]
k

6 Compute the cdf of the random variable ∑N
j=1 λ̂N, j Z 2

j through the Davies algorithm

An alternative is to replace Gaussian quadrature rules with quasi-Monte Carlo sequences (see Choirat and Seri, 2006). 
Even if the rate of convergence is often worse than for Gaussian quadrature rules, quasi-Monte Carlo points are simpler to 
obtain. Therefore, for a low-discrepancy sequence (yk)k=1,...,N with weights equal to 1

N , the set of eigenvalues 
(
λ̂N, j

)
j=1,...,N

is obtained as the spectrum of the matrix HN with generic element hik,N = 1
N h (yi, yk). The results in Section 5.1 show that 

quasi-Monte Carlo works well for the computation of the spectrum associated to quadratic statistics.
Another very simple numerical integration technique is the trapezium rule. This corresponds to the sequence of points 

(yk)k=1,...,N =
(

k−1
N−1

)
k=1,...,N

and weights (wk)k=1,...,N =
(

1
2(N−1)

, 1
N−1 , . . . , 1

N−1 , 1
2(N−1)

)
.

At last, some recent contributions, and in particular Trefethen (2008) and Xiang and Bornemann (2012), have shown that 
the Clenshaw–Curtis quadrature rule has often similar convergence properties to Gauss quadrature but has an advantage 
when it comes to the computation of the nodes and the weights. It may be useful to point out that the so-called Clenshaw–
Curtis quadrature rule should be more correctly called Fejér’s first rule (Fejér, 1933). The difference among Clenshaw–Curtis, 
Fejér’s first and Fejér’s second rules are described in Waldvogel (2006) and Trefethen (2008), where it is also stated that 
Fejér’s first rule is sometimes called “classical” Clenshaw–Curtis rule. In the following, Fejér’s first rule will be used instead 
of Clenshaw–Curtis rule as it can also be applied to kernels (such as the Anderson–Darling one) that diverge at the endpoints 
of the interval. However, for coherence with the literature, the name of Clenshaw–Curtis rule is adopted here.

4. Theoretical results

In this section, some theoretical results concerning the convergence and the approximation error of eigenvalues, eigen-
functions and the cdf are discussed.

4.1. Results on eigenvalues

The Nyström method can be applied in two different situations. First, it can be used for the numerical solution of 
Fredholm integral equations, defined as Hm (x) = λm (x) where H is an integral operator, λ �= 0 is known and the objective 
is to obtain the function m. Second, it can be used to find the eigenvalues and the eigenfunctions of H. The second situation 
is the one considered here.

When applied to the numerical solution of Fredholm integral equations, properties of the Nyström method have often 
been investigated using the theory of collectively compact operators; see, e.g., Anselone (1971), Linz (1979), Atkinson and 
Han (2005). As it concerns the properties of the kernels required for the approximation to converge, it is enough to reason 
as in Linz (1979, pp. 177-178). A first very simple set of conditions is given by boundedness and continuity of the kernel h. 
In Anselone (1967) and Atkinson (1967a), it is shown respectively how the theory can be generalized to cover kernels that 
are bounded and discontinuous, and weakly singular.

When dealing with the computation of the eigenvalues and the eigenfunctions of H, the problem can be seen as a two-
step one: first of all, a sequence of approximate eigenvalues is computed and then a set of Fredholm equations is solved, 
in which the known constants are replaced by the approximate eigenvalues. Convergence results for the approximated 
eigenvalues of H have been proved in Hilbert (1904, 1912), where a special integration rule is used, and Bückner (1950, p. 
110, 1952, p. 362; note that Wielandt, 1956, p. 263, inverts the pages of the two sources), where the result is extended to 
more general rules. Here a result from Wielandt (1956), as stated in Rakotch (1975, p. 795), is reported.

In the statements of the results, the following notation will be used. Let λ̂+
N,1 ≥ λ̂+

N,2 ≥ · · · ≥ λ̂+
N,r > 0 > λ̂−

N,s ≥ · · · ≥
λ̂−

N,2 ≥ λ̂−
N,1 be the r largest positive and the s smallest negative eigenvalues of HN , and let λ+

1 ≥ λ+
2 ≥ · · · ≥ λ+

r > 0 > λ−
s ≥

· · · ≥ λ−
2 ≥ λ−

1 be the corresponding eigenvalues of H. Moreover:

ηN (x, y) :=
N∑

k=1

wkh (x, yk)h (yk, y) −
1∫

h (x, z)h (z, y)dz. (7)
0

7
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An important property is that the quadrature rule is convergent with respect to h (x, y), i.e. ηN (x, y) converges to 0 uniformly 
in [0,1] × [0,1] or ‖ηN‖∞ ↓ 0.

Theorem 1. Let h (x, y) be a Hermitian kernel on [0,1] × [0,1], i.e. h (x, y) = h (y, x), such that x �→ ∫ 1
0 |h (x, y)|2 dy is bounded on 

[0,1]. Suppose that ‖ηN‖∞ ↓ 0 and 
∑N

j=1 w j = 1. Then:

λ+
i = lim

N→∞ λ̂+
N,i, λ−

j = lim
N→∞ λ̂−

N, j, i = 1, . . . , r, j = 1, . . . , s,

and this convergence is uniform in i and j, i.e. 
∣∣∣λ̂N,k − λk

∣∣∣≤ qN with limN→∞ qN = 0, where either λ̂N,k = λ̂+
N,k, λk = λ+

k or λ̂N,k =
λ̂−

N,k, λk = λ−
k .

In the following some hints about the behavior of 
∣∣∣λ̂N, j − λ j

∣∣∣ are provided. One should realize that the results presented 
in the literature are not necessarily comparable to each other. First, some results provide error estimates, i.e. bounds that 
are amenable to (approximate) computation and can be used to investigate the precision of the algorithm, while others 
concern convergence rates, i.e. the order of decrease of 

∣∣∣λ̂N, j − λ j

∣∣∣ with N and j. The former are often cruder as they must 
contain only computable (or approximable) quantities. Second, some results are stated in terms of the distance between an 
eigenvalue of H and the nearest eigenvalue of HN , while others involve the distance between the j-th eigenvalues of H and 
HN , both counted with their multiplicity. The main difference between the two situations arises for multiple eigenvalues: 
when results are stated for an eigenvalue of H and the nearest eigenvalue of HN , they do not take into account the potential 
difference in the multiplicity of the eigenvalues.

The most complete results seem to be the ones exploiting the theory of prolongation and restriction operators: it turns 
out that the approximated eigenvalues converge to the true ones (under hypotheses (I)-(VI) on pp. 58 and 60 in Spence, 
1975), both if eigenvalues are simple and multiple (see respectively Theorems 3 and 7 in Spence, 1975); the extension to the 
case of unbounded kernels is covered in Section 4 of the same paper. A complete study of error estimates for eigenvalues 
(and eigenfunctions) in the case of kernels with simple eigenvalues is in Spence (1977, see p. 140 for the case of multiple 
eigenvalues).

However, the present paper aims at giving some hints about convergence rates for eigenvalues rather than providing 
error estimates. In Keller (1965, Corollary 2.1), pointwise bounds for the distance between an eigenvalue of H and the 
nearest eigenvalue of HN (evaluated through a quadrature rule with positive weights) are provided. In the case of simple 
eigenvalues, these bounds can be used to provide a convergence rate since any approximated eigenvalue converges to its 
real value and, for N large enough, the approximated eigenvalue that is the nearest to λ j is the j-th one, that is λ̂N, j ; as 
explained above, the only situation that raises some problem arises when eigenvalues are multiple. Therefore, for simple 
eigenvalues:

∣∣∣λ̂N, j − λ j

∣∣∣� sup
ym∈(yk)k=1,...,N

∣∣∣∣∣∣
N∑

k=1

wkh (ym, yk)φ j (yk) −
1∫

0

h (ym, z)φ j (z)dz

∣∣∣∣∣∣ (8)

(note that the original source contains a typo, as uk in the right-hand side of equation (33) should be u j , and defines 
eigenvalues in a non-standard way). The behavior in N of this term is dictated by the integration error (as an example, 
for Monte Carlo integration it behaves like OP

(
N− 1

2

)
, etc.); however, the approximation error also depends on j through 

the fact that higher-order eigenfunctions oscillate more rapidly or equivalently that their derivatives grow in absolute value 
with j.

The following theorem reproduces the bound derived in Rakotch (1975) involving the j-th eigenvalue of H and the j-th 
eigenvalue of HN for 1 ≤ j ≤ N , for simple and multiple eigenvalues. Moreover, a corollary that simplifies the bound is 
stated after the theorem.

Theorem 2. Let h (x, y) be a Hermitian kernel on [0,1] × [0,1], i.e. h (x, y) = h (y, x), such that x �→ ∫ 1
0 |h (x, y)|2 dy is bounded on 

[0,1]. Let:

γN :=
⎡⎣ N∑

j=1

w j

1∫
0

∣∣ηN
(
x, y j

)∣∣2 dx

⎤⎦
1
2

,

αN :=
⎡⎣ 1∫ 1∫

|ηN (x, y)|2 dxdy

⎤⎦
1
2

,

0 0

8
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βN :=
⎡⎣ N∑

i=1

N∑
j=1

wi w j
∣∣ηN

(
yi, y j

)∣∣2⎤⎦
1
2

and:

ρN := max {αN , βN} .

Then, if ‖ηN‖∞ ↓ 0 and 
∑N

j=1 w j = 1, the following two bounds hold:

• For any j:

∣∣∣λ̂N, j − λ j

∣∣∣≤(1 + √
5

2
(γN + ρN)

) 1
2

.

• If λ2
j ∨ λ̂2

N, j ≥ CρN for some C > 1, then:∣∣∣λ̂N,1 − λ1

∣∣∣≤ γN(
λ2

1 ∨ λ̂2
N,1 − ρN

) 1
2

,

∣∣∣λ̂N, j − λ j

∣∣∣≤ γN + ρN(
λ2

j ∨ λ̂2
N, j − ρN

) 1
2

.

Remark. For j > 1, the second bound is better than the first one when:

λ2
j ∨ λ̂2

N, j ≥ 2

1 + √
5
γN + 1 + √

5

2
ρN .

This implies that taking the minimum of the bounds automatically satisfies the requirement that λ2
j ∨ λ̂2

N, j ≥ CρN for some 
C > 1.

Corollary 1. Under the conditions of Theorem 2:

∣∣∣λ̂N, j − λ j

∣∣∣≤
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ηN‖∞
(
λ2

1 − ‖ηN‖∞
)− 1

2 , j = 1, λ2
1 ≥ 3+√

5
4 ‖ηN‖∞ ,(

1 + √
5
) 1

2 ‖ηN‖
1
2∞ , j = 1, λ2

1 < 3+√
5

4 ‖ηN‖∞ ,

2‖ηN‖∞
(
λ2

j − ‖ηN‖∞
)− 1

2
, j > 1, λ2

j ≥ √
5‖ηN‖∞ ,(

1 + √
5
) 1

2 ‖ηN‖
1
2∞ , j > 1, λ2

j <
√

5‖ηN‖∞ .

Even if the bounds of Theorem 2 and Corollary 1 appear more complicated than the one in (8), it is simple to see that 
for bounded and continuous kernels also this bound is decreasing in N with a rate given by the integration error but is 
increasing in j because of the effect of λ j and λ̂N, j → λ j . Roughly speaking, 

∣∣∣λ̂N, j − λ j

∣∣∣= O  
(‖ηN‖∞ /

∣∣λ j
∣∣), so that higher-

order eigenvalues are approximated with larger error, a fact that is observed in practice. Note that this bound eliminates 
the dependence on the unknown eigenfunction φ j .

4.2. Results on eigenfunctions

As concerns the eigenfunctions, the results are less complete and more complex than for eigenvalues. On the one hand, 
eigenfunctions are more difficult to study with respect to eigenvalues. As they are elements of a functional space, results 
differ according to the kind of convergence (pointwise, uniform, etc.) that is used. On the other hand, a part of the error in 
their approximation comes from the previous approximation of the eigenvalues and the results about that, as shown above, 
are far from easy. This problem has been studied in Atkinson (1967b,a) (using the theory of collectively compact operators), 
Thomas (1974), Spence (1975, 1977, 1979) (using the theory of prolongation and restriction operators), Keller (1965) and 
Rakotch (1975). However, the discussion in Spence (1977) points at a general equivalence between the rate of convergence 
of eigenvalues and of eigenfunctions.

When the objective is the computation of an integral involving the eigenfunctions, it is often better to use the approx-
imated eigenvector instead of the approximated eigenfunction. As an example, the coefficients a j = ∫ gφ jdP for j = 1, . . . , 
appearing in the asymptotic distribution of Vn under a Pitman drift, can be approximated as:
9
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âN, j =
N∑

k=1

wk g (yk)
[
φ̃N, j

]
k
.

It would be possible to compute these quantities using the function φ j , as approximated through formula (6), evaluated for a 
set of points different from (yk)k=1,...,N . The rationale is that, while the number of points used for computing the eigenvalues 
and the eigenvectors is bounded by computational requirements, the number of points used in the integration is less critical 
from the point of view of resource scarcity. However, there is a practical reason for performing the integration only at the 
points (yk)k=1,...,N . Indeed, many methods for the solution of integral equations are superconvergent (see, e.g., Atkinson and 
Han, 2005, p. 475), i.e. they have a convergence rate at the nodes (yk)k=1,...,N that is faster than the convergence rate over 
the rest of the interval. This implies that using the function at points not belonging to (yk)k=1,...,N may need a much larger 
amount of points.

4.3. Results on the cdf

Whenever the objective of the analysis is the computation of the cdf, it is useful to choose N in such a way to keep the 
approximation error under a certain threshold. Unfortunately, the derivation of error bounds and convergence rates for the 
computation of the cdf is difficult. Indeed, while bounds for the uniform distance between the distributions of two weighted 
sums of χ2 random variables exist (see, e.g., (4)), the bounds on the eigenvalues in Theorem 2 and Corollary 1 are hardly 
precise enough to be used to derive convergence rates. Some bounds for the overall approximation of the spectrum, i.e. for √∑∞

j=1

(
λ̂N, j − λ j

)2
(see Section 5.2), may be obtained from Section 4 of Koltchinskii and Giné (2000) but, even in the 

simplest case, the bounds they provide are far from optimal (see Appendix A.3). Moreover, bounds obtained replacing the 
results of Theorem 2 and Corollary 1 into (4) can be misleading. As an example, according to the bounds in Theorem 2 and 
Corollary 1, the error 

∣∣∣λ̂N, j − λ j

∣∣∣ with large subscript j can be so important that it may seem better to set the approxi-

mate eigenvalue to 0, rather than using λ̂N, j . This suggests to approximate 
∑∞

j=1 λ j Z 2
j through 

∑N ′
j=1 λ̂N, j Z 2

j with N ′ < N . 
However, some anecdotical evidence (see Choirat and Seri, 2013; Seri, 2017) shows that the approximation of 

∑∞
j=1 λ j Z 2

j is 

much better when 
∑N ′

j=1 λ̂N, j Z 2
j has the same expectation of 

∑∞
j=1 λ j Z 2

j . Therefore, especially when 
∑∞

j=1 λ j =∑N
j=1 λ̂N, j , 

neglecting the smallest approximated eigenvalues can lead to an increase of the error. This does not rule out the possibility 
that neglecting the smallest approximated eigenvalues improves the approximation of the distribution of 

∑∞
j=1 λ j

(
Z 2

j − 1
)

, 
because in this case centering is automatic. As the reader may see, the situation is quite complex. For this reason, this topic 
is left for a future paper. For the time being, the computations show that a larger N is always better and there is no value 
added from taking N ′ < N .

5. Computational results

The algorithm previously described has been implemented in an R script. The computation of the cdf uses an algorithm 
implemented in a package described in Duchesne and Lafaye De Micheaux (2010).

The following approximate integration methods will be used:

MC Monte-Carlo method. N is equal to the number of pseudo-random points drawn in [0,1].
HA Integration through the one-dimensional Halton (or van der Corput) sequence.
TR Trapezium rule.
GL Gauss–Legendre quadrature rule.
CC Clenshaw–Curtis quadrature rule.

These quadrature rules have been applied to three kernels described in Table 1. The choice of these kernels was dictated 
by the fact that they represent a sufficiently broad scope of possible applications: the Cramér–von Mises kernel has simple 
eigenvalues and is bounded, the Anderson–Darling kernel has simple eigenvalues and is unbounded, the Watson kernel has 
multiple eigenvalues. In the theory outlined in Section 4, bounded kernels with simple eigenvalues are considered as the 
baseline case, while deviations from this case have to be taken into account on a case by case basis.

Some comments on the quadrature rules may be necessary. First, HA corresponds to what is called a sequence in the 
relevant literature (see Niederreiter, 1992, p. 14): the name “sequence” is used to denote a finite segment extracted from an 
infinite sequence, so that (yk)k=1,...,N is obtained from (yk)k=1,...,N−1 by adding a single point, while the name “point set” 
is reserved for the cases in which a different set of points has to be computed for any value of N . It is clear that sequences 
are easier to compute but often less performing than point sets. In this case, the one-dimensional van der Corput sequence, 
a low-discrepancy sequence whose n-th element is constructed by a symmetric reflection around the decimal point of the 
digit expansion of the natural number n in base b (see Niederreiter, 1992, p. 25), has been used. The sequence depends 
on the choice of a base b: in the applications, b = 3 has been taken because, despite the uniformity properties of van der 
Corput sequences are known to deteriorate when b increases, the minimum value of the star discrepancy is obtained for 
10



Table 1
The kernels used in the computations (here P j denotes the j-th Legendre polynomial and �·� denotes 
the floor function).

Name Kernel Eigenvalue λ j Eigenfunction φ j (x)

Cramér–von Mises x2

2 + y2

2 − x ∨ y + 1
3 j−2π−2

√
2 cos (π jx)

Anderson–Darling − ln (x ∨ y − xy) − 1 j−1 ( j + 1)−1 √
2 j + 1P j (2x − 1)

Watson (x−y)2

2 + x+y
2 − x ∨ y + 1

12
1

4π2

⌊
j+1

2

⌋−2
{ √

2 sin (π ( j + 1) x) , j odd,√
2 cos (π jx) , j even

b = 3 (see Niederreiter, 1992, p. 25). The results are quantitatively, but not qualitatively, different for other values of b. 
Moreover, this sequence is referred to as a Halton sequence in the following, because this is the name that is used in the 
multidimensional extensions of the van der Corput sequence. Second, the Hammersley point set, a quasi-Monte Carlo set of 
points that, for d = 1, is given by (yk)k=1,...,N =

(
2k−1

2N

)
k=1,...,N

, has also been used; however, as expected, the results were 
very similar to the ones of the trapezium rule TR, when available. Third, TR cannot be applied to the Anderson–Darling 
kernel since this quadrature rule requires the kernel to be finite at the extremes of the interval [0,1].

5.1. Single eigenvalues

The performance of the bound of Corollary 1 is shown here for the Cramér–von Mises statistic. In this case, (7) contains 
the following quantity:

1∫
0

h (x, z)h (z, y)dz

= − 1

24
(x − y)4 − 1

12
(x + y)3 − 1

24
(x − y)2 + 1

2
xy (x ∧ y) + (x ∨ y)3

6
+ 1

720
.

Figs. 1, 2, 3 and 4 display, respectively for HA, TR, GL and CC, the error in the computation of the eigenvalues, namely ∣∣∣λ̂N, j − λ j

∣∣∣ for j = 1, . . . , 9, and the corresponding bounds of Theorem 2 and Corollary 1. It is apparent that the bounds, 
especially those of the theorem, are very good for j = 1, but they deteriorate rapidly for increasing j. Moreover, for large j

and small N the bound does not decrease as ‖ηN‖∞ , but as ‖ηN‖
1
2∞ , and this does not seem tight.

It should be noted that, if these bounds have to be used to evaluate the performance of the algorithm in the approxima-
tion of a specific eigenvalue, the bound of Corollary 1 still holds with λ̂N, j replacing λ j in the right-hand side.

5.2. Spectrum

While the previous bounds are quite effective in bounding the error in the computation of a single eigenvalue, the overall 
approximation of the spectrum is more difficult to characterize.

The following distance between the spectra of the integral operator and of its finite-dimensional approximation is used:

�(2) (N) =
√√√√ ∞∑

j=1

(
λ̂N, j − λ j

)2

where λ̂N, j is set to 0 for j > N . This distance is linked to the one considered in Koltchinskii and Giné (2000) and Adamczak 
and Bednorz (2015). The behavior of this quantity for N varying depends both on the rate of convergence of λ̂N, j to λ j , 
for j ≤ N , as a function of N and j, and on the rate of decrease of λ j to 0, for j > N . This distance has been computed 
for all values of N in the range [10,1000]. Then, Figs. 5, 6 and 7 display the function N �→ �(2) (N) on a log-log scale for 
the quadrature methods introduced above. As concerns MC, the figures display both the median (in solid gray line) and the 
2.5% and 97.5% quantiles (in dashed gray line) on 1000 replications.

For all the methods, the best possible convergence rate is of the same order as:

�(2) (N) =

√√√√√ N∑
j=1

(
λ̂N, j − λ j

)2 +
∞∑

j=N+1

λ2
j ≥
√√√√ ∞∑

j=N+1

λ2
j .
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Fig. 1. Distance between the true eigenvalues of the Cramér–von Mises kernel and the ones approximated through HA for varying N: absolute distance ∣∣∣λ̂N, j − λ j

∣∣∣ (black line), bound from Theorem 2 (gray, solid line) and bound from Corollary 1 (gray, dashed line) for the eigenvalues j = 1, 2, 3 (first column, 
from top to down), j = 4, 5, 6 (second column, from top to down), j = 7, 8, 9 (third column, from top to down).

Fig. 2. Distance between the true eigenvalues of the Cramér–von Mises kernel and the ones approximated through TR for varying N: absolute distance ∣∣∣λ̂N, j − λ j

∣∣∣ (black line), bound from Theorem 2 (gray, solid line) and bound from Corollary 1 (gray, dashed line) for the eigenvalues j = 1, 2, 3 (first column, 
from top to down), j = 4, 5, 6 (second column, from top to down), j = 7, 8, 9 (third column, from top to down).
12
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Fig. 3. Distance between the true eigenvalues of the Cramér–von Mises kernel and the ones approximated through GL for varying N: absolute distance ∣∣∣λ̂N, j − λ j

∣∣∣ (black line), bound from Theorem 2 (gray, solid line) and bound from Corollary 1 (gray, dashed line) for the eigenvalues j = 1, 2, 3 (first column, 
from top to down), j = 4, 5, 6 (second column, from top to down), j = 7, 8, 9 (third column, from top to down).

Fig. 4. Distance between the true eigenvalues of the Cramér–von Mises kernel and the ones approximated through CC for varying N: absolute distance ∣∣∣λ̂N, j − λ j

∣∣∣ (black line), bound from Theorem 2 (gray, solid line) and bound from Corollary 1 (gray, dashed line) for the eigenvalues j = 1, 2, 3 (first column, 
from top to down), j = 4, 5, 6 (second column, from top to down), j = 7, 8, 9 (third column, from top to down).
13
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Fig. 5. Distance between the true and the approximated spectrum of the Cramér–von Mises kernel.

Fig. 6. Distance between the true and the approximated spectrum of the Anderson–Darling kernel.

Fig. 7. Distance between the true and the approximated spectrum of the Watson kernel.
14
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If λ j ∼ kj−1−α for α > 0, 
∑∞

j=N+1 λ2
j ∼ k2ζ (2 + 2α, N + 1) ∼ k2

2α+1 N−2α−1 (see Seri, 2015, p. 827), where ζ is the Hurwitz 

zeta function. Therefore, �(2) (N) � k√
2α+1

N−α− 1
2 . For the statistics considered here, α = 1 and the best convergence rate is 

N− 3
2 , that is achieved by TR (when available), GL and CC.
For MC the results of Koltchinskii and Giné (2000, Section 4) can be applied. It turns out that, according to the 

computations in Appendix A.3, �(2) (N) = OP

(
N− 3

8

)
for the Cramér–von Mises and Watson statistics, and �(2) (N) =

OP

(
N− 3

8 ln
3

16 N
)

for the Anderson–Darling statistic. Note, however, that the rate of decrease of �(2) (N) that is apparent 

from computational results behaves like OP

(
N− 1

2

)
. This shows that it is difficult to obtain explicit and exact rates of 

decrease of �(2) (N) even for the MC case, in which the machinery of probability theory is available.
For HA, let b be the base of the sequence. The segment of the sequence composed of the first bs − 1 elements, for s ∈N , 

corresponds to a rearrangement of the set 
(

j
bs

)
j=1,...,bs−1

. The results for HA coincide, for N = bs − 1, with those for the 

equally spaced grid 
(

j
N+1

)
j=1,...,N

. In practice, this is expected to behave like TR. The performance of HA first deteriorates 

between the successive values of 
(
bs − 1

)
s=1,...

, because the points that are added to the segment of bs −1 elements worsen 
the uniformity properties of the sequence up to N , and then improves when bs approaches N + 1.

These results and the computations confirm that MC is always the worst method. HA improves over MC and its perfor-
mance is better than expected. The general equivalence observed between Gauss–Legendre and Clenshaw–Curtis quadrature 
rules should not be a surprise according to Trefethen (2008) and Xiang and Bornemann (2012): GL and CC dominate HA 
and have always the same asymptotic behavior. Moreover, in two cases out of three (namely for the Cramér–von Mises and 
Watson statistics, that is whenever TR is defined), the rate of convergence of �(2) to 0 is the same for TR, GL and CC, even 
if the error is uniformly smaller for TR.

5.3. Eigenfunctions

The Supplementary Material contains plots showing the behavior of the approximated eigenfunctions for the three ker-
nels and the five integration methods. A visual inspection of the graphs shows that the Nyström method, when applied to 
some of the kernels, gives rise to an unexpected and surprising behavior. Indeed, the approximated eigenfunctions of the 
Cramér–von Mises and Watson kernels are given by piecewise linear functions, whose knots are the nodes of the quadra-
ture rule. It will be shown below that this happens because the kernels can be represented, on the area 0 ≤ x ≤ y ≤ 1, 
as quadratic functions of x and y, and the discontinuity along the diagonal takes a particular form. This does not happen 
for the Anderson–Darling kernel. Note that this strange fact does not affect the approximation properties of the Nyström 
extension.

Proposition 1. For any value of � = 1, . . . , N − 1, the Nyström extension is, for the Cramér–von Mises kernel:

φ̂N, j (x) = φ̂N, j (y�) − x − y�

λ̂N, j

�∑
k=1

wk
[
φ̃N, j

]
k
, x ∈ [y�, y�+1) ,

for the Watson kernel:

φ̂N, j (x) = φ̂N, j (y�) − x − y�

λ̂N, j

{
N∑

k=1

yk wk
[
φ̃N, j

]
k
+

�∑
k=1

wk
[
φ̃N, j

]
k

}
, x ∈ [y�, y�+1) ,

and for the Anderson–Darling kernel:

φ̂N, j (x) = φ̂N, j (y�) + ln

(
y� (1 − x)

(1 − y�) x

)
1

λ̂N, j

�∑
k=1

wk
[
φ̃N, j

]
k
, x ∈ [y�, y�+1) .

To evaluate the rate of convergence of the eigenfunctions, the L2-distance between the first 6 eigenfunctions of the 
integral operator and their approximations has been computed:

�(2) (N) =

√√√√√ 6∑
j=1

1∫
0

(
φ̂N, j (x) − φ j (x)

)2
dx.

Unfortunately, the correspondence of the approximated eigenfunctions to the real ones cannot be simply obtained using the 
coupling imposed by the order of appearance of the eigenvalues in the true and the approximated spectrum. First of all, 
15



R. Seri Computational Statistics and Data Analysis 174 (2022) 107437
Fig. 8. Distance between the true and the approximated first 6 eigenfunctions of the Cramér–von Mises kernel.

Fig. 9. Distance between the true and the approximated first 6 eigenfunctions of the Anderson–Darling kernel.

eigenfunctions are defined up to their sign. Moreover, eigenvalues often appear in the spectrum with multiple cardinality 
(this is the case of the Watson kernel, indeed); this implies that more than one approximated and real eigenfunction 
corresponds to the same eigenvalue. At last, the error of approximation is often larger for the last eigenvalues and this 
can imply a rank reversal of the eigenvalues and of the associated eigenfunctions. In order to associate an approximated 
eigenfunction to the corresponding real one, the following algorithm has been used. First of all, the value of j minimizing 

the quantity 
∫ 1

0

(
φ̂N, j (x) − φ1 (x)

)2
dx has been associated with the first eigenfunction, then, among the remaining values 

of j, the value of j minimizing 
∫ 1

0

(
φ̂N, j (x) − φ2 (x)

)2
dx has been associated with the second eigenfunction, and so on. 

The same method has been used also for the graphs in the Supplementary Material. This is not exactly as an overall 
combinatorial optimization over all the indexes at the same time, but seems to work very well in practice. Also the sign of 
the approximated eigenfunctions has been chosen in order to minimize the above quantities. The sum has been limited to 
the first 6 eigenfunctions, since they are sufficiently representative of the behavior of the method and they are not affected 
by the fluctuations appearing in higher-order eigenfunctions. Moreover, even if this should not be the case, approximated 
higher-order eigenfunctions can have an imaginary part. However, increasing the number of eigenfunctions does not change 
the general picture.

The function N �→ �(2) (N) for N ∈ [10,500] is displayed on a log-log scale in Figs. 8, 9 and 10 for the Cramér–von 
Mises, Anderson–Darling and Watson kernels and for the quadrature methods introduced above. The performance of MC 
(illustrated by the median in solid gray line and the 2.5% and 97.5% quantiles in dashed gray line on 1000 replications) 
is quite poor in all cases (this can be seen also from the graphs in the Supplementary Material), in line with the bounds 
in Koltchinskii and Giné (2000) and the equivalence between rates of convergence for eigenvalues and eigenfunctions. The 
16



Fig. 10. Distance between the true and the approximated first 6 eigenfunctions of the Watson kernel.

Table 2
Cumulative distribution function of the Watson statistic and approximation computed through the algorithm 
described in the text with eigenvalues approximated through HA.

cdf relative error

x Exact N = 10 N = 100 N = 1000 N = 10 N = 100 N = 1000

0.025 0.034001 0.067275 0.034767 0.034011 3.44 · 10−2 7.93 · 10−4 1.02 · 10−5

0.050 0.292900 0.314682 0.293363 0.292904 3.08 · 10−2 6.55 · 10−4 6.68 · 10−6

0.075 0.550283 0.550562 0.550255 0.550282 6.20 · 10−4 −6.21 · 10−5 −1.78 · 10−6

0.100 0.722922 0.715010 0.722732 0.722920 −2.86 · 10−2 −6.87 · 10−4 −8.42 · 10−6

0.125 0.830494 0.820963 0.830282 0.830491 −5.62 · 10−2 −1.25 · 10−3 −1.42 · 10−5

0.150 0.896468 0.887791 0.896283 0.896466 −8.38 · 10−2 −1.79 · 10−3 −1.97 · 10−5

0.175 0.936787 0.929702 0.936641 0.936785 −1.12 · 10−1 −2.32 · 10−3 −2.53 · 10−5

0.200 0.961408 0.955950 0.961298 0.961406 −1.41 · 10−1 −2.84 · 10−3 −3.08 · 10−5

0.225 0.976439 0.972388 0.976360 0.976438 −1.72 · 10−1 −3.37 · 10−3 −3.65 · 10−5

0.250 0.985616 0.982685 0.985560 0.985616 −2.04 · 10−1 −3.90 · 10−3 −4.22 · 10−5

0.275 0.991219 0.989137 0.991180 0.991218 −2.37 · 10−1 −4.42 · 10−3 −4.80 · 10−5

0.300 0.994639 0.993182 0.994613 0.994639 −2.72 · 10−1 −4.95 · 10−3 −5.39 · 10−5

0.325 0.996727 0.995719 0.996709 0.996727 −3.08 · 10−1 −5.48 · 10−3 −5.99 · 10−5

0.350 0.998002 0.997311 0.997990 0.998002 −3.46 · 10−1 −6.01 · 10−3 −6.60 · 10−5

0.375 0.998780 0.998310 0.998772 0.998780 −3.85 · 10−1 −6.54 · 10−3 −7.22 · 10−5

0.400 0.999255 0.998938 0.999250 0.999255 −4.27 · 10−1 −7.07 · 10−3 −7.84 · 10−5

behavior of TR, when defined, is very disparate: indeed, in the Cramér–von Mises case, TR performs very well while, for 
the Watson kernel, it is very bad. This seems to be due to a shift in the eigenfunctions that is very difficult to explain: 
the eigenfunctions are accurately described, but they are shifted of a small amount, sufficient to worsen dramatically the 
performance of the algorithm. This is clear from the graphs in the Supplementary Material. The same phenomenon takes 
place for the quasi-Monte Carlo method and worsens its performance. GL performs quite well, but the best method is CC. 
In particular, for the Anderson–Darling kernel, CC with N = 10 points is much better than HA with N = 250 points!

5.4. Cumulative distribution function

In order to show the performance of the Davies algorithm, the cdf of the Watson statistic at a set of points has been 
computed and the values have been compared with the result of the Davies algorithm using the eigenvalues as obtained 
from HA (Table 2), TR (Table 3), GL (Table 4) and CC (Table 5) with 10, 100 and 1000 points.

The Watson statistic has been chosen because its asymptotic distribution is related to the asymptotic distribution of 
the Kolmogorov–Smirnov statistic (see Watson, 1961, p. 112), as both can be expressed as the distribution of the supre-
mum of a Brownian bridge. For the asymptotic distribution of the Kolmogorov–Smirnov statistic a rapidly convergent series 
representation (see Watson, 1961, p. 112, or Serfling, 1980, Theorem A, p. 62) has been used.
R. Seri Computational Statistics and Data Analysis 174 (2022) 107437
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Table 3
Cumulative distribution function of the Watson statistic and approximation computed through the algorithm 
described in the text with eigenvalues approximated through TR.

cdf relative error

x Exact N = 10 N = 100 N = 1000 N = 10 N = 100 N = 1000

0.025 0.034001 0.068770 0.034353 0.034005 3.60 · 10−2 3.64 · 10−4 3.59 · 10−6

0.050 0.292900 0.312309 0.293049 0.292901 2.74 · 10−2 2.12 · 10−4 2.08 · 10−6

0.075 0.550283 0.547966 0.550245 0.550282 −5.15 · 10−3 −8.43 · 10−5 −8.32 · 10−7

0.100 0.722922 0.713869 0.722839 0.722922 −3.27 · 10−2 −3.03 · 10−4 −2.97 · 10−6

0.125 0.830494 0.820953 0.830411 0.830493 −5.63 · 10−2 −4.85 · 10−4 −4.77 · 10−6

0.150 0.896468 0.888348 0.896400 0.896467 −7.84 · 10−2 −6.56 · 10−4 −6.45 · 10−6

0.175 0.936787 0.930448 0.936735 0.936787 −1.00 · 10−1 −8.23 · 10−4 −8.09 · 10−6

0.200 0.961408 0.956687 0.961369 0.961407 −1.22 · 10−1 −9.90 · 10−4 −9.72 · 10−6

0.225 0.976439 0.973030 0.976412 0.976439 −1.45 · 10−1 −1.16 · 10−3 −1.13 · 10−5

0.250 0.985616 0.983207 0.985597 0.985616 −1.68 · 10−1 −1.32 · 10−3 −1.30 · 10−5

0.275 0.991219 0.989543 0.991206 0.991219 −1.91 · 10−1 −1.49 · 10−3 −1.46 · 10−5

0.300 0.994639 0.993489 0.994630 0.994639 −2.14 · 10−1 −1.65 · 10−3 −1.62 · 10−5

0.325 0.996727 0.995946 0.996721 0.996727 −2.39 · 10−1 −1.82 · 10−3 −1.79 · 10−5

0.350 0.998002 0.997476 0.997998 0.998002 −2.63 · 10−1 −1.98 · 10−3 −1.95 · 10−5

0.375 0.998780 0.998428 0.998778 0.998780 −2.89 · 10−1 −2.15 · 10−3 −2.11 · 10−5

0.400 0.999255 0.999021 0.999254 0.999255 −3.14 · 10−1 −2.32 · 10−3 −2.27 · 10−5

Table 4
Cumulative distribution function of the Watson statistic and approximation computed through the algorithm 
described in the text with eigenvalues approximated through GL.

cdf relative error

x Exact N = 10 N = 100 N = 1000 N = 10 N = 100 N = 1000

0.025 0.034001 0.073507 0.034562 0.034007 4.09 · 10−2 5.80 · 10−4 5.88 · 10−6

0.050 0.292900 0.317032 0.293139 0.292902 3.41 · 10−2 3.38 · 10−4 3.40 · 10−6

0.075 0.550283 0.548650 0.550223 0.550282 −3.63 · 10−3 −1.34 · 10−4 −1.36 · 10−6

0.100 0.722922 0.712554 0.722789 0.722921 −3.74 · 10−2 −4.83 · 10−4 −4.88 · 10−6

0.125 0.830494 0.819151 0.830362 0.830492 −6.69 · 10−2 −7.75 · 10−4 −7.82 · 10−6

0.150 0.896468 0.886670 0.896359 0.896467 −9.46 · 10−2 −1.05 · 10−3 −1.06 · 10−5

0.175 0.936787 0.929073 0.936704 0.936786 −1.22 · 10−1 −1.31 · 10−3 −1.33 · 10−5

0.200 0.961408 0.955630 0.961347 0.961407 −1.50 · 10−1 −1.58 · 10−3 −1.59 · 10−5

0.225 0.976439 0.972247 0.976396 0.976439 −1.78 · 10−1 −1.84 · 10−3 −1.86 · 10−5

0.250 0.985616 0.982641 0.985586 0.985616 −2.07 · 10−1 −2.11 · 10−3 −2.13 · 10−5

0.275 0.991219 0.989143 0.991198 0.991219 −2.36 · 10−1 −2.37 · 10−3 −2.39 · 10−5

0.300 0.994639 0.993209 0.994625 0.994639 −2.67 · 10−1 −2.64 · 10−3 −2.66 · 10−5

0.325 0.996727 0.995753 0.996718 0.996727 −2.98 · 10−1 −2.91 · 10−3 −2.93 · 10−5

0.350 0.998002 0.997344 0.997996 0.998002 −3.30 · 10−1 −3.17 · 10−3 −3.19 · 10−5

0.375 0.998780 0.998339 0.998776 0.998780 −3.62 · 10−1 −3.44 · 10−3 −3.46 · 10−5

0.400 0.999255 0.998961 0.999253 0.999255 −3.95 · 10−1 −3.70 · 10−3 −3.73 · 10−5

Table 5
Cumulative distribution function of the Watson statistic and approximation computed through the algorithm 
described in the text with eigenvalues approximated through CC.

cdf relative error

x Exact N = 10 N = 100 N = 1000 N = 10 N = 100 N = 1000

0.025 0.034001 0.076871 0.034568 0.034007 4.44 · 10−2 5.86 · 10−4 5.89 · 10−6

0.050 0.292900 0.319590 0.293141 0.292902 3.77 · 10−2 3.42 · 10−4 3.41 · 10−6

0.075 0.550283 0.548880 0.550222 0.550282 −3.12 · 10−3 −1.35 · 10−4 −1.37 · 10−6

0.100 0.722922 0.711701 0.722787 0.722921 −4.05 · 10−2 −4.88 · 10−4 −4.88 · 10−6

0.125 0.830494 0.818048 0.830361 0.830492 −7.34 · 10−2 −7.83 · 10−4 −7.83 · 10−6

0.150 0.896468 0.885654 0.896358 0.896467 −1.04 · 10−1 −1.06 · 10−3 −1.06 · 10−5

0.175 0.936787 0.928244 0.936703 0.936786 −1.35 · 10−1 −1.33 · 10−3 −1.33 · 10−5

0.200 0.961408 0.954993 0.961346 0.961407 −1.66 · 10−1 −1.60 · 10−3 −1.60 · 10−5

0.225 0.976439 0.971775 0.976395 0.976439 −1.98 · 10−1 −1.86 · 10−3 −1.86 · 10−5

0.250 0.985616 0.982300 0.985586 0.985616 −2.31 · 10−1 −2.13 · 10−3 −2.13 · 10−5

0.275 0.991219 0.988901 0.991198 0.991219 −2.64 · 10−1 −2.40 · 10−3 −2.40 · 10−5

0.300 0.994639 0.993040 0.994625 0.994639 −2.98 · 10−1 −2.67 · 10−3 −2.66 · 10−5

0.325 0.996727 0.995636 0.996718 0.996727 −3.33 · 10−1 −2.93 · 10−3 −2.93 · 10−5

0.350 0.998002 0.997263 0.997996 0.998002 −3.70 · 10−1 −3.20 · 10−3 −3.20 · 10−5

0.375 0.998780 0.998284 0.998776 0.998780 −4.07 · 10−1 −3.47 · 10−3 −3.46 · 10−5

0.400 0.999255 0.998924 0.999253 0.999255 −4.45 · 10−1 −3.74 · 10−3 −3.73 · 10−5
18
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Table 6
Relative error of Davies algorithm with real weights and with weights 
approximated by the different methods for the Watson statistic.

N = 10 N = 100 N = 1000

True weights 0.1666667 0.019607840 0.001996008
HA 0.4266450 0.007066250 7.843184 · 10−5

TR 0.3141730 0.002316861 2.273100 · 10−5

GL 0.3954432 0.003700858 3.727959 · 10−5

CC 0.4450957 0.003738163 3.731690 · 10−5

The tables also display the relative error given by:

P
{∑∞

j=1 λ j Z 2
j ≤ x

}
− P

{∑N
j=1 λ̂N, j Z 2

j ≤ x
}

P
{∑∞

j=1 λ j Z 2
j > x

}
for the same values of x. The function has been normalized using the survival function in order to emphasize the properties 
of the algorithm for the most relevant values of x.

The results show that the approximation with N = 100 is already good enough for most applications, while the approx-
imation based on N = 1000 points is extremely good and has always at least 5 digits (4 for HA) coinciding with the real 
value of the cdf. The approximation is better in the tail (that is for probabilities larger than 95%), since in this case even N
as small as 10 can be good enough! Moreover, the present results are similar to the ones outlined in Section 5.1, as GL and 
CC have asymptotically equivalent performances (so that no digit differs for N = 1000), and TR slightly outperforms GL and 
CC even if the difference appears to be almost negligible.

A further fact that is not apparent from the tables is shown in Table 6. Here the first row shows the maximum relative 
error when N true weights are used to approximate the cdf of the infinite weighted sum 

∑∞
j=1 λ j Z 2

j . In practice, each cell 
in the first row shows the maximum value of:∣∣∣P {∑∞

j=1 λ j Z 2
j ≤ x

}
− P

{∑N
j=1 λ j Z 2

j ≤ x
}∣∣∣

P
{∑∞

j=1 λ j Z 2
j > x

}
over the values of x used in Tables 2, 3, 4 and 5. The other rows show the same quantity when the weights are computed 
using the quadrature rules presented before. It is apparent that truncation of the spectrum performs much worse than 
the Wielandt–Nyström method. As explained at the end of Section 4, the reason is that the approximation of 

∑∞
j=1 λ j Z 2

j
is much better when the approximating variable retains the expectation of the approximated variable (see the bounds in 
Choirat and Seri, 2013; Seri, 2017). From this point of view, the Wielandt–Nyström method is better than truncation of the 
true spectrum.

5.5. Application to the Hall test

This section contains an application to the test presented in Hall (1985, p. 127), that is a V -statistic with kernel:

h (x, y) = (ρ − ‖x − y‖) · 1{‖x−y‖≤ρ} − ρ2

for ρ < 1
2 and irrational, where ‖·‖ is the distance on the interval [0,1] wrapped around a circle, namely ‖x − y‖ = (y − x)∧

(x − y + 1) for 0 ≤ x ≤ y ≤ 1. The eigenvalues are given by λ j = 2 
(

2
⌈

j
2

⌉
π
)−2 (

1 − cos
(

2
⌈

j
2

⌉
πρ
))

(the leading 2 lacks 
in the formula in Hall, 1985, p. 127, because of a different definition of the spectral decomposition) and the eigenfunctions 
are φ j (x) = 2

1
2 cos

(
2
⌈

j
2

⌉
πx
)

for j even and φ j (x) = 2
1
2 sin

(
2
⌈

j
2

⌉
πx
)

for j odd. In the computations below, ρ = π/8 is 
taken.

Only the Clenshaw–Curtis method is considered in these computations since it appears to be the most performing one. 
Fig. 11 displays the computed eigenvalues as a function of N: eigenvalues corresponding to even and odd indexes are 
displayed respectively as solid and dashed lines, while the real values are represented by black dots. Eigenfunctions for 
N = 10, 20, 40, 80, 160, 320 are displayed in Fig. 12: the black curves represent the eigenfunctions for N = 320 while lighter 
curves identify lower values of N . For N = 10 the first eigenfunctions are correctly recovered while the last ones show some 
deviation from the true curves; however, the algorithm correctly describes the overall behavior of the true functions for 
N = 40. Table 7 shows the value of the cdf of the test statistic for N = 10, 100, 1000.

5.6. Application to the Schilling test

This section contains an application to the statistic proposed in Bickel and Breiman (1983) and Schilling (1983a,b). Let 
(X1, . . . ,Xn) be a sample from a bounded density in Rm continuous on an open support. Let g be the hypothesized density, 
19



R. Seri Computational Statistics and Data Analysis 174 (2022) 107437
Fig. 11. Eigenvalues of the Hall kernel evaluated through CC as a function of N .

Fig. 12. Performance of the algorithm for the approximation of the eigenfunctions of the Hall kernel evaluated through CC: eigenfunction φ j for j = 1, 2, 3
from top to bottom in the first column and for j = 4, 5, 6 from top to bottom in the second column; approximated eigenfunctions for N = 10, 20, 40, 80, 160
displayed in increasing shades of grey, true eigenfunction (equal to the approximated one with N = 320) in black.

Ri := min j �=i
∥∥X j − Xi

∥∥ the distance from Xi to its nearest neighbor, and V (r) the volume of an m-sphere of radius r. Then, 
define:

W i := exp {−ng (Xi) V (Ri)} , i = 1, . . . ,n.

If g is the true density, then the W i ’s have an asymptotically uniform distribution. For a bounded continuous weight 
function w (x), one can consider the weighted empirical process:

Fn (t) = 1

n

n∑
w (Xi)1 {W i ≤ t} , 0 ≤ t ≤ 1,
i=1
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Table 7
Cumulative distribution function of the Hall statistic and approximation computed through the algorithm de-
scribed in the text with eigenvalues approximated through CC.

cdf relative error

x Exact N = 10 N = 100 N = 1000 N = 10 N = 100 N = 1000

0.125 0.305492 0.316818 0.305590 0.305493 1.63 · 10−2 1.41 · 10−4 1.43 · 10−6

0.250 0.651396 0.648297 0.651356 0.651396 −8.89 · 10−3 −1.16 · 10−4 −1.17 · 10−6

0.375 0.825604 0.820590 0.825547 0.825603 −2.88 · 10−2 −3.25 · 10−4 −3.30 · 10−6

0.500 0.912756 0.908498 0.912709 0.912755 −4.88 · 10−2 −5.34 · 10−4 −5.43 · 10−6

0.625 0.956355 0.953332 0.956322 0.956355 −6.93 · 10−2 −7.43 · 10−4 −7.55 · 10−6

0.750 0.978166 0.976199 0.978145 0.978166 −9.01 · 10−2 −9.52 · 10−4 −9.68 · 10−6

0.875 0.989077 0.987861 0.989064 0.989077 −1.11 · 10−1 −1.16 · 10−3 −1.18 · 10−5

1.000 0.994536 0.993809 0.994528 0.994536 −1.33 · 10−1 −1.37 · 10−3 −1.39 · 10−5

1.125 0.997266 0.996842 0.997262 0.997266 −1.55 · 10−1 −1.58 · 10−3 −1.61 · 10−5

1.250 0.998632 0.998390 0.998630 0.998632 −1.78 · 10−1 −1.79 · 10−3 −1.82 · 10−5

1.375 0.999316 0.999179 0.999315 0.999316 −2.01 · 10−1 −2.00 · 10−3 −2.03 · 10−5

1.500 0.999658 0.999581 0.999657 0.999658 −2.24 · 10−1 −2.21 · 10−3 −2.24 · 10−5

1.625 0.999829 0.999786 0.999828 0.999829 −2.48 · 10−1 −2.42 · 10−3 −2.46 · 10−5

1.750 0.999914 0.999891 0.999914 0.999914 −2.72 · 10−1 −2.63 · 10−3 −2.67 · 10−5

1.875 0.999957 0.999944 0.999957 0.999957 −2.97 · 10−1 −2.83 · 10−3 −2.88 · 10−5

2.000 0.999979 0.999972 0.999978 0.999979 −3.22 · 10−1 −3.04 · 10−3 −3.09 · 10−5

and:

Zn (t) := √
n
{

Fn (t) −Eg Fn (t)
}
, 0 ≤ t ≤ 1,

where Eg is the expectation under g . It can be shown that, if g is the true density, the process Zn (t) converges weakly to 
a Gaussian process with mean zero and covariance kernel:

k (x, y) =
⎡⎢⎣x (1 + y ln x) + xy

∫
B(x,y)

{η (x, y,ω) − 1}dω

⎤⎥⎦Eg w2 (X1)

− xy (1 + ln xy + ln x ln y)
(
Eg w (X1)

)2
, 0 ≤ x ≤ y ≤ 1,

where:

B (x, y) = {ω ∈Rm : r (x) ≤ ‖ω‖ ≤ r (x) + r (y)
}
,

lnη (x, y,ω) =
∫

{
z∈Rm:‖z‖≤r(x),‖z−ω‖≤r(y)

} dz,

and r (·) is the radius of an m-sphere with volume − ln (·). The integral can be solved explicitly only in the case m = 1, and 
approximated in the case m → ∞. A natural test is to reject the null if 

∫ 1
0 Z 2

n (t)dt is large. It can be shown (see Schilling, 
1983a, Section 3) that 

∫ 1
0 Z 2

n (t)dt converges in distribution to a weighted sum of χ2 random variables whose weights are 
the eigenvalues of the integral operator induced by the kernel k (·, ·). Note that here k (·, ·) is not the kernel of the V -
statistic, but the covariance function of the Gaussian process. Nevertheless, its eigenvalues can still be recovered through 
the same algorithm.

In the case m = 1:

k (x, y) =
[

x (1 + y ln x) + xy
(

ln y + 2y− 1
2 − 2

)]
Eg w2 (X1)

− xy (1 + ln xy + ln x ln y)
(
Eg w (X1)

)2
, 0 ≤ x ≤ y ≤ 1.

In the case m = ∞, one gets:

k (x, y) = [x (1 + y ln x) + xy ln x ln y]Eg w2 (X1)

− xy (1 + ln xy + ln x ln y)
(
Eg w (X1)

)2
, 0 ≤ x ≤ y ≤ 1.

Two interesting cases arise, respectively, when w (·) ≡ 1 or when Eg w (X1) = 0 and Eg w2 (X1) = 1. Schilling (1983b)
computed the distribution of the four versions of the statistic with the following covariance functions:
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Table 8
Cumulative distribution function of the Schilling statistic with m = 1 and 
w (·) ≡ 1 computed through the algorithm described in the text with 
eigenvalues approximated through CC.

x N = 10 N = 100 N = 1000 Schilling

0.05 0.06233527 0.03136490 0.03098597 0.034
0.10 0.25203374 0.22997143 0.22975772 0.236
0.15 0.43921421 0.43437447 0.43434537 0.439
0.20 0.58390528 0.58679351 0.58683385 0.590
0.25 0.68955400 0.69507872 0.69513965 0.697
0.30 0.76617700 0.77222678 0.77228989 0.764
0.35 0.82219143 0.82794881 0.82800744 0.829
0.40 0.86361884 0.86880020 0.86885227 0.870
0.45 0.89461802 0.89915937 0.89920464 0.900
0.50 0.91806083 0.92198661 0.92202554 0.923
0.60 0.94971654 0.95259078 0.95261908 0.9529
0.70 0.96867436 0.97074994 0.97077026 0.9709
0.80 0.98027011 0.98175678 0.98177126 0.9819
0.90 0.98747150 0.98852963 0.98853988 0.9886
1.00 0.99199413 0.99274316 0.99275038 0.9928
1.10 0.99485857 0.99538623 0.99539129 0.9954
1.20 0.99668473 0.99705487 0.99705841 0.9971
1.30 0.99785506 0.99811375 0.99811621 0.9981
1.40 0.99860831 0.99878852 0.99879022 0.9988
1.50 0.99909484 0.99922001 0.99922119 0.9992
1.60 0.99941004 0.99949677 0.99949758 —
1.70 0.99961476 0.99967472 0.99967528 —
1.75 0.99968851 0.99973832 0.99973879 0.9998
1.80 0.99974804 0.99978941 0.99978979 —
1.90 0.99983496 0.99986346 0.99986372 —
2.00 0.99989176 0.99991136 0.99991153 0.99991
2.10 0.99992892 0.99994238 0.99994250 —
2.25 0.99996211 0.99996975 0.99996982 0.99997
2.50 0.99998666 0.99998961 0.99998964 —
3.00 0.99999832 0.99999876 0.99999876 —
4.00 0.99999997 0.99999998 0.99999998 —
5.00 1.00000000 1.00000000 1.00000000 —

Table 9
Cumulative distribution function of the Schilling statistic with m = 1, 
Eg w (X1) = 0 and Eg w2 (X1) = 1 computed through the algorithm de-
scribed in the text with eigenvalues approximated through CC.

x N = 10 N = 100 N = 1000 Schilling

0.05 0.02222570 0.00980884 0.00966330 0.011
0.10 0.11317478 0.09759467 0.09743398 0.101
0.15 0.22808151 0.21892039 0.21883489 0.222
0.20 0.33709072 0.33279698 0.33275967 0.335
0.25 0.43215096 0.43074542 0.43073518 0.433
0.30 0.51291222 0.51318054 0.51318571 0.515
0.35 0.58106505 0.58230866 0.58232274 0.584
0.40 0.63858735 0.64039149 0.64041063 0.642
0.45 0.68726656 0.68937431 0.68939612 0.691
0.50 0.72860686 0.73085446 0.73087740 0.732
0.60 0.79399309 0.79624153 0.79626414 0.797
0.70 0.84217224 0.84424379 0.84426445 0.845
0.80 0.87813373 0.87996941 0.87998763 0.880
0.90 0.90527943 0.90687351 0.90688928 0.907
1.00 0.92596942 0.92733852 0.92735202 0.928
1.10 0.94186935 0.94303790 0.94304940 0.943
1.20 0.95417382 0.95516752 0.95517729 0.9553
1.30 0.96375238 0.96459542 0.96460370 0.9647
1.40 0.97124644 0.97196047 0.97196748 0.9721
1.50 0.97713470 0.97773868 0.97774460 0.9778
1.60 0.98177813 0.98228845 0.98229344 0.9823
1.70 0.98545138 0.98588210 0.98588631 0.9859
1.75 0.98699202 0.98738758 0.98739144 0.9874
1.80 0.98836501 0.98872819 0.98873174 0.9888
1.90 0.99068154 0.99098747 0.99099046 0.9910
2.00 0.99252714 0.99278460 0.99278712 0.9928
2.10 0.99400020 0.99421668 0.99421879 0.9942
2.25 0.99567530 0.99584193 0.99584355 0.9959
2.50 0.99748282 0.99759010 0.99759114 0.9976
3.00 0.99913608 0.99917996 0.99918038 0.9992
4.00 0.99989460 0.99990166 0.99990173 0.99990
5.00 0.99998676 0.99998785 0.99998786 0.99999
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Table 10
Cumulative distribution function of the Schilling statistic with m = ∞
and w (·) ≡ 1 computed through the algorithm described in the text with 
eigenvalues approximated through CC.

x N = 10 N = 100 N = 1000 Schilling

0.05 0.05719199 0.03290107 0.03261189 0.036
0.10 0.22387932 0.20776500 0.20761142 0.212
0.15 0.38713618 0.38249155 0.38245620 0.386
0.20 0.51631440 0.51679229 0.51680323 0.519
0.25 0.61456999 0.61703195 0.61705961 0.619
0.30 0.68951260 0.69264827 0.69268109 0.694
0.35 0.74743146 0.75069611 0.75072942 0.752
0.40 0.79285016 0.79601705 0.79604898 0.797
0.45 0.82894447 0.83192283 0.83195267 0.833
0.50 0.85795951 0.86071804 0.86074557 0.861
0.60 0.90077638 0.90309156 0.90311458 0.904
0.70 0.92978564 0.93169955 0.93171853 0.932
0.80 0.94984916 0.95141580 0.95143131 0.9516
0.90 0.96392896 0.96520095 0.96521352 0.9653
1.00 0.97391503 0.97494053 0.97495064 0.9750
1.10 0.98105461 0.98187632 0.98188440 0.9819
1.20 0.98619106 0.98684600 0.98685243 0.9869
1.30 0.98990492 0.99042458 0.99042967 0.9905
1.40 0.99260124 0.99301195 0.99301596 0.9930
1.50 0.99456553 0.99488904 0.99489219 0.9949
1.60 0.99600070 0.99625478 0.99625725 0.9963
1.70 0.99705191 0.99725095 0.99725288 0.9973
1.75 0.99746740 0.99764342 0.99764512 —
1.80 0.99782357 0.99797914 0.99798065 0.9980
1.90 0.99839110 0.99851246 0.99851363 0.9985
2.00 0.99880921 0.99890371 0.99890462 0.9989
2.10 0.99911770 0.99919117 0.99919188 0.9992
2.25 0.99943626 0.99948649 0.99948698 0.9995
2.50 0.99973166 0.99975816 0.99975841 0.9998
3.00 0.99993843 0.99994568 0.99994575 0.99995
4.00 0.99999664 0.99999716 0.99999717 —
5.00 0.99999981 0.99999985 0.99999985 —

Table 11
Cumulative distribution function of the Schilling statistic with m = ∞, 
Eg w (X1) = 0 and Eg w2 (X1) = 1 computed through the algorithm de-
scribed in the text with eigenvalues approximated through CC.

x N = 10 N = 100 N = 1000 Schilling

0.05 0.02038592 0.01044095 0.01032602 0.011
0.10 0.10047678 0.08881489 0.08869694 0.091
0.15 0.20072691 0.19324671 0.19317566 0.196
0.20 0.29726078 0.29289793 0.29285735 0.295
0.25 0.38369072 0.38131005 0.38128826 0.383
0.30 0.45938848 0.45831036 0.45830092 0.460
0.35 0.52526975 0.52508702 0.52508614 0.526
0.40 0.58254644 0.58299433 0.58299950 0.584
0.45 0.63237982 0.63327292 0.63328235 0.634
0.50 0.67579733 0.67699969 0.67701207 0.678
0.60 0.74680297 0.74834274 0.74835831 0.749
0.70 0.80122495 0.80286467 0.80288111 0.803
0.80 0.84320234 0.84480930 0.84482533 0.845
0.90 0.87577514 0.87727949 0.87729445 0.878
1.00 0.90119155 0.90256096 0.90257454 0.903
1.10 0.92112627 0.92235030 0.92236242 0.923
1.20 0.93683568 0.93791629 0.93792697 0.938
1.30 0.94926902 0.95021474 0.95022408 0.9504
1.40 0.95914828 0.95997078 0.95997889 0.9601
1.50 0.96702619 0.96773823 0.96774524 0.9678
1.60 0.97332853 0.97394278 0.97394882 0.9740
1.70 0.97838512 0.97891360 0.97891879 0.9790
1.75 0.98052891 0.98101869 0.98102351 —
1.80 0.98245292 0.98290663 0.98291109 0.9830
1.90 0.98573306 0.98612190 0.98612572 0.9862
2.00 0.98838374 0.98871651 0.98871978 0.9887
2.10 0.99052989 0.99081433 0.99081712 0.9908
2.25 0.99301421 0.99323856 0.99324075 0.9933
2.50 0.99577223 0.99592263 0.99592410 0.9959
3.00 0.99842919 0.99849594 0.99849659 0.9985
4.00 0.99977476 0.99978744 0.99978756 0.99979
5.00 0.99996668 0.99996901 0.99996903 0.99997
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k (x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x + xy

(
2y− 1

2 − 3 − ln x ln y
)

, m = 1, w (·) ≡ 1,

x + xy
(

ln xy + 2y− 1
2 − 2

)
, m = 1,Eg w (X1) = 0,Eg w2 (X1) = 1,

x − xy (1 + ln y) , m = ∞, w (·) ≡ 1,

x + xy ln x (1 + ln y) , m = ∞,Eg w (X1) = 0,Eg w2 (X1) = 1,

for 0 ≤ x ≤ y ≤ 1; for 0 ≤ y ≤ x ≤ 1, the covariance functions are defined by symmetry. His algorithm for retriev-
ing the eigenvalues is complex. It consists of two steps: first, the Wielandt–Nyström method with N = 100, nodes (

1
2N , 3

2N , . . . ,1 − 1
2N

)
and equal weights is used; second, the approximated eigenvalues are used as the starting point of 

another algorithm approximating the eigenfunctions and the kernel appearing in the integral equation through power se-
ries. The author states that the difference between the eigenvalues obtained in the first and in the second step is negligible. 
The computational results are shown in Tables 8, 9, 10 and 11. The last column contains the values obtained in Schilling 
(1983b).

6. Conclusions

An algorithm, based on the replacement of an integral with a quadrature rule, has been proposed for the computation 
of the eigenvalues and eigenfunctions of an integral operator associated with the kernel of a quadratic statistic. Its com-
putational properties have been reviewed for several choices of the quadrature rule and of the kernel. The quantities can 
be used for the computation of the asymptotic distribution of the statistic, and of its asymptotic power and efficiency. The 
Clenshaw–Curtis quadrature rule seems to be the most reliable, and provides results that are consistently among the best 
for both the eigenvalues and the eigenfunctions.

Appendix A. Auxiliary results and proofs

A.1. The Davies algorithm

As explained in Section 3, the approximation of the eigenvalues of the integral operator H through the finite spectrum 
of the matrix HN makes it possible to replace the weighted (infinite) sum of χ2 random variables in (3) with a quadratic 
form in Gaussian random variables.

Some methods for the approximation of the distribution of this class of random variables have been proposed in the 
literature, starting from the seminal paper of Imhof (1961). This distribution can be computed through the techniques of 
Imhof (1961), Sheil and O’Muircheartaigh (1977) and Davies (1973, 1980) for quadratic forms in normal random variables. 
See Mathai and Provost (1992) for an overview of some of these algorithms. Related algorithms have been proposed in Rice 
(1980), Brown (1986) and Lindsay et al. (2000).

Here, the algorithm in Davies (1980) is used. The difference between Davies’s and Imhof’s algorithms is the fact that 
the latter does not provide control for the so-called integration error (see below for more details). Imhof (1961, p. 423)
states explicitly that “[i]t does not seem feasible [...] to obtain an upper bound for the error of integration resulting from 
the application of a standard quadrature formula.” However, the former uses a Fourier cosine series summation formula 
to approximate the integral through a trapezium quadrature rule and provide a control on the error. With respect to the 
algorithm of Sheil and O’Muircheartaigh, the one by Davies holds more generally because the former cannot handle negative 
weights. Indeed, negative eigenvalues can arise for kernels that are not positive semidefinite or, even if the kernel is positive 
semidefinite, when the version of the Wielandt–Nyström method recommended in Koltchinskii and Giné (2000) is used.

The algorithm can be briefly described as follows. Let X be a random variable with characteristic function φ (u) =
E 
(
eiu X

)
. Under some conditions (i.e. if E |X | < ∞ and, for some c and δ > 0 and for all u > 1, |φ (u)| < cu−δ ; see Gil-

Pelaez, 1951, and Davies, 1973, p. 415), it is possible to express the cdf of X as a function of φ:

P (X < x) = 1

2
−

+∞∫
−∞

�
(

φ (u) e−iux

2πu

)
du

where � (·) is the imaginary part of a complex number. In Davies (1973), it is shown that:

P (X < x) = 1

2
−

∞∑
k=0

�
(

φ
((

k + 1
2

)
�
)

e
−i
(

k+ 1
2

)
�x
)

π
(
k + 1

2

)
−

∞∑
n=1

(−1)n
{
P

(
X < x − 2πn

�

)
− P

(
X > x + 2πn

�

)}
.

As a result, the author proposes to approximate P (X < x) as:
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P (X < x) � 1

2
−

K∑
k=0

�
(

φ
((

k + 1
2

)
�
)

e
−i
(

k+ 1
2

)
�x
)

π
(
k + 1

2

) .

Using the characteristic formula for a finite sum of χ2 random variables, i.e. φ (u) = ∏N
j=1

(
1 − 2iλ ju

)− 1
2 , this formula 

becomes:

P (X < x) � 1

2
−

K∑
k=0

sin

(∑N
j=1

arctan
[

2
(

k+ 1
2

)
�λ j

]
2 − (k + 1

2

)
�x

)

π
(
k + 1

2

)∏N
j=1

(
1 + 4

(
k + 1

2

)2
�2λ2

j

) 1
4

.

The use of this formula introduces two sources of error:

• an integration error − 
∑∞

n=1 (−1)n
{
P
(

X < x − 2πn
�

)
−P

(
X > x + 2πn

�

)}
: this error can be made small choosing ad-

equately �. Davies (1973, p. 416) proposes to choose � so that max
{
P
(

X < x − 2π
�

)
,P
(

X > x + 2π
�

)}
is less than 

half the maximum allowable error.

• a truncation error − 
∑∞

k=K+1

�
(

φ
((

k+ 1
2

)
�
)

e
−i
(

k+ 1
2

)
�x
)

π
(

k+ 1
2

) : the way in which this error term can be made small choosing 

adequately the parameter K is discussed in Imhof (1961, p. 423) and more thoroughfully in Davies (1980, p. 324)
where several upper bounds on this error are given.

The last source of error comes from the replacement of the true eigenvalues 
(
λ j
)

j with the computed ones (
λ̂N, j

)
j=1,...,N

. If the weights 
(
λ j
)

j and 
(
λ̂N, j

)
j

are non-negative, Theorem 1 in Naumov et al. (2018) yields:

sup
x≥0

∣∣∣∣∣∣P
⎛⎝ N∑

j=1

λ̂N, j Z 2
j ≤ x

⎞⎠− P

⎛⎝ ∞∑
j=1

λ j Z 2
j ≤ x

⎞⎠∣∣∣∣∣∣
≤ C

⎧⎪⎨⎪⎩
⎛⎝ ∞∑

j=1

λ2
j

∞∑
j=2

λ2
j

⎞⎠−1/4

+
⎛⎝ N∑

j=1

λ̂2
N, j

N∑
j=2

λ̂2
N, j

⎞⎠−1/4
⎫⎪⎬⎪⎭

·
⎛⎝ N∑

j=1

∣∣∣λ j − λ̂N, j

∣∣∣+ ∞∑
k=N+1

∣∣λ j
∣∣⎞⎠

� C

⎛⎝ ∞∑
j=2

λ2
j

⎞⎠− 1
2
⎛⎝ N∑

j=1

∣∣∣λ j − λ̂N, j

∣∣∣+ ∞∑
k=N+1

∣∣λ j
∣∣⎞⎠

for an absolute constant C > 0 that can differ from place to place. When the eigenvalues λ̂N, j for j = 1, . . . , N are known 
exactly, the bound gives the error in the truncation of 

∑∞
j=1 λ j Z 2

j to 
∑N

j=1 λ j Z 2
j . However, in that case computable and 

tight bounds can be proved along the lines of Choirat and Seri (2013) and Seri (2017).

A.2. Proofs

Proof of Corollary 1. It is straightforward to note that αN , βN , γN and ρN can be majorized by ‖ηN‖∞ . Therefore, λ2
j ∨

λ̂2
N, j − ρN ≥ λ2

j − ‖ηN‖∞ and, provided λ2
j − ‖ηN‖∞ > 0:∣∣∣λ̂N,1 − λ1

∣∣∣≤ γN(
λ2

1 ∨ λ̂2
N,1 − ρN

) 1
2

≤ ‖ηN‖∞(
λ2

1 − ‖ηN‖∞
) 1

2

,

∣∣∣λ̂N, j − λ j

∣∣∣≤ γN + ρN(
λ2

j ∨ λ̂2
N, j − ρN

) 1
2

≤ 2‖ηN‖∞(
λ2

j − ‖ηN‖∞
) 1

2

.

The bound:
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∣∣∣λ̂N, j − λ j

∣∣∣≤(1 + √
5

2
(γN + ρN)

) 1
2

≤
((

1 + √
5
)

‖ηN‖∞
) 1

2

does not require any condition. The final result is obtained comparing the bounds. QED

Proof of Proposition 1. From (6), the formula for the Nyström extension is:

φ̂N, j (x) = 1

λ̂N, j

N∑
k=1

h (x, yk) wk
[
φ̃N, j

]
k
.

For x ∈ [y�, y�+1), the behavior of the approximated eigenfunction can be obtained setting x = y�+ε with ε ∈ [0, y�+1 − y�). 
Then:

φ̂N, j (y� + ε) − φ̂N, j (y�) = 1

λ̂N, j

N∑
k=1

{h (y� + ε, yk) − h (y�, yk)} wk
[
φ̃N, j

]
k
.

For the Cramér–von Mises kernel:

h (y� + ε, yk) − h (y�, yk) = εy� + ε2

2
+ y� ∨ yk − (y� + ε) ∨ yk.

Using the fact that 
∑N

k=1 wk
[
φ̃N, j

]
k
= 0:

φ̂N, j (y� + ε) − φ̂N, j (y�) = 1

λ̂N, j

N∑
k=1

{y� ∨ yk − (y� + ε) ∨ yk} wk
[
φ̃N, j

]
k

= − ε

λ̂N, j

�∑
k=1

wk
[
φ̃N, j

]
k
.

The same takes place for the Watson kernel. Indeed:

h (y� + ε, yk) − h (y�, yk) = ε2

2
+ (y� − yk) ε + ε

2
+ y� ∨ yk − (y� + ε) ∨ yk

and:

φ̂N, j (y� + ε) − φ̂N, j (y�) = 1

λ̂N, j

N∑
k=1

{−ykε + y� ∨ yk − (y� + ε) ∨ yk} wk
[
φ̃N, j

]
k

= − ε

λ̂N, j

N∑
k=1

yk wk
[
φ̃N, j

]
k
− ε

λ̂N, j

�∑
k=1

wk
[
φ̃N, j

]
k
.

This does not happen for the Anderson–Darling kernel. Indeed:

h (y� + ε, yk) − h (y�, yk) = − ln ((y� + ε) ∨ yk − (y� + ε) yk) + ln (y� ∨ yk − y� yk)

and:

φ̂N, j (y� + ε) − φ̂N, j (y�)

= 1

λ̂N, j

�∑
k=1

{− ln ((y� + ε) − (y� + ε) yk) + ln (y� − y� yk)} wk
[
φ̃N, j

]
k

+ 1

λ̂N, j

N∑
k=�+1

{− ln (yk − (y� + ε) yk) + ln (yk − y� yk)} wk
[
φ̃N, j

]
k

= − ln (y� + ε) + ln y�

λ̂N, j

�∑
k=1

wk
[
φ̃N, j

]
k

+ − ln (1 − y� − ε) + ln (1 − y�)

λ̂N, j

N∑
wk
[
φ̃N, j

]
k

k=�+1
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= ln

(
y� (1 − y� − ε)

(1 − y�) (y� + ε)

)
1

λ̂N, j

�∑
k=1

wk
[
φ̃N, j

]
k

where the last step uses the equality 
∑N

k=�+1 wk
[
φ̃N, j

]
k
= − 

∑�
k=1 wk

[
φ̃N, j

]
k
, coming from 

∑N
k=1 wk

[
φ̃N, j

]
k
= 0. QED

A.3. Rate of decrease for the MC case

In this section, the results of Section 4 in Koltchinskii and Giné (2000) are used to investigate the rate of convergence of 
the approximated spectrum for the MC case. However, while their result is stated for a matrix ȞN whose generic element 
is ȟik,N = 1−δik

N h (yi, yk) where δik is the Kronecker delta, the present paper uses the matrix HN whose generic element is 
hik,N = 1

N h (yi, yk) (the situation is further complicated by the fact that they call Hn the first matrix and H̃n the second 
one). This can be solved by showing that the distance between the spectra of ȞN and HN is negligible with respect to the 
distance between the spectra of HN and H. Let λ̌N, j be the j-th eigenvalue of ȞN . Eq. (3.10) in Koltchinskii and Giné (2000)
bounds the L2-distance of the spectra of ȞN and HN as:

N∑
j=1

(
λ̌N, j − λ̂N, j

)2 ≤
N∑

i=1

⎛⎝ 1

N

∞∑
j=1

λ jφ
2
j (yi)

⎞⎠2

= 1

N2

N∑
i=1

h2 (yi, yi) .

In most cases of interest (e.g., if the kernel h is bounded, or if the nodes are well chosen), the right-hand side is O  
(

N−1
)

and 
√∑N

j=1

(
λ̌N, j − λ̂N, j

)2 = O  
(

N− 1
2

)
.

However, when the points are iid, a solution under less stringent assumptions can be obtained noting that:

E
N∑

j=1

(
λ̌N, j − λ̂N, j

)2 ≤ 1

N

1∫
0

h2 (x, x)dx = O
(
N−1)

for all kernels such that 
∫ 1

0 h2 (x, x)dx < ∞, and 
√∑N

j=1

(
λ̌N, j − λ̂N, j

)2 = OP

(
N− 1

2

)
. This is always of a smaller order than 

the bounds established in the following.

A.3.1. Cramér–von Mises statistic
In this case φ j (x) = √

2 cos (π jx) and:

1∫
0

φ2
k (x)φ2

j (x)dx = 4

1∫
0

cos2 (πkx) cos2 (π jx)dx

=
1∫

0

[cos (2πkx) + 1] [cos (2π jx) + 1] dx

= 1 + 1

2
δ jk ≤ 3

2
.

Therefore, using λ j = j−2π−2 in Theorem 4.2 in Koltchinskii and Giné (2000), E 
(
�(2) (N)

)2 = O  
( R

N + R−3
)

and, under the 
optimal choice R ∼ N

1
4 , E 

(
�(2) (N)

)2 = O  
(

R− 3
4

)
and �(2) (N) = OP

(
N− 3

8

)
.

A.3.2. Watson statistic
In this case φ j (x) = √

2 sin (π ( j + 1) x) for j odd and φ j (x) = √
2 cos (π jx) for j even:

1∫
0

φ2
k (x)φ2

j (x)dx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
∫ 1

0 sin2 (π (k + 1) x) sin2 (π ( j + 1) x)dx, k odd, j odd,

4
∫ 1

0 sin2 (π (k + 1) x) cos2 (π jx)dx, k odd, j even,

4
∫ 1

0 cos2 (πkx) sin2 (π ( j + 1) x)dx, k even, j odd,

4
∫ 1 cos2 (πkx) cos2 (π jx)dx, k even, j even,
0
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=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 1

2 δ jk, k odd, j odd,

1 − 1
2 δ j,k+1, k odd, j even,

1 − 1
2 δ j+1,k, k even, j odd,

1 + 1
2 δ jk, k even, j even.

As a result, 
∫ 1

0 φ2
k (x)φ2

j (x) dx ≤ 3
2 . Theorem 4.2 in Koltchinskii and Giné (2000) yields the same rate as for the Cramér–

von Mises case.

A.3.3. Anderson–Darling statistic
From Cauchy–Schwarz inequality:

1∫
0

φ2
k (x)φ2

j (x)dx ≤

√√√√√ 1∫
0

φ4
k (x)dx

1∫
0

φ4
j (x)dx.

It is clear that 
∫ 1

0 φ4
k (x) dx = (2k+1)2

2

∫ 1
−1 P 4

k (x)dx. Now, from 34.3.19 in Olver et al. (2010):

Pk (x) P� (x) =
k+�∑

m=|k−�|

(
k � m
0 0 0

)2

(2m + 1) Pm (x)

where 
(

j1 j2 j3
m1 m2 m3

)
is the Wigner 3 j symbol (see Olver et al., 2010, Chapter 34). Therefore:

P 4
k (x) =

2k∑
m=0

(
k k m
0 0 0

)4

(2m + 1)2 P 2
m (x)

and:

1∫
−1

P 4
k (x)dx =

2k∑
m=0

(
k k m
0 0 0

)4

(2m + 1)2

1∫
−1

P 2
m (x)dx

= 2
2k∑

m=0

(
k k m
0 0 0

)4

(2m + 1) = 2
k∑

n=0

(
k k 2n
0 0 0

)4

(4n + 1)

where the second equality derives from the fact that, when the projective quantum numbers (the lower parameters) are all 
zero, the Wigner 3 j symbol is non-zero only when the sum of the angular momenta (the upper parameters) is even. Now, 
from 34.3.5 in Olver et al. (2010):(

k k 2n
0 0 0

)4

=
[

(2k − 2n)!
(2k + 2n + 1)!

]2 [
(k + n)!
(k − n)! (2n)!

]4 1

(n!)8
.

It is easy to see that(
k k 0
0 0 0

)4

= 1

(2k + 1)2
∼ 1

4k2
,

and, through Stirling formula:(
k k 2k
0 0 0

)4

=
[

1

(4k + 1)!
]2 [

(2k)!
k!
]8

∼ 1

8πk3
.

For all values of n with 0 < n < k, let a be defined by the equality n = ak. Stirling formula yields:(
k k 2ak
0 0 0

)4

=
(

(2k (1 − a))!
(2k (1 + a) + 1)!

)2 {
(2ak)! ((1 + a)k)!

[(ak)!]2 ((1 − a)k)!
}4

∼ 1

4π2a2
(
1 − a2

)
k4

∼ 1

4π2n2
(
k2 − n2

) .
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As a result:

k∑
n=0

(
k k 2n
0 0 0

)4

(4n + 1)

∼ 1

4k2
+ 4k

8πk3
+ 1

π2

k−1∑
n=1

1

n
(
k2 − n2

)
= 1

4k2
+ 1

2π2k2
+ ψ(0) (k + 1) + 3ψ(0) (k) − ψ(0) (2k) + 3γ

2π2k2

∼ 3 ln k

2π2k2

and 
∫ 1

0 φ4
k (x) dx ∼ 6 ln k

π2 . Therefore:

R∑
k, j=1

(
λ2

k + λ2
j + λkλ j

) 1∫
0

φ2
k (x)φ2

j (x)dx

≤
R∑

k, j=1

(
λ2

k + λ2
j + λkλ j

)√√√√√ 1∫
0

φ4
k (x)dx

1∫
0

φ4
j (x)dx

= 2
R∑

k=1

λ2
k

√√√√√ 1∫
0

φ4
k (x)dx

R∑
j=1

√√√√√ 1∫
0

φ4
j (x)dx +

⎛⎜⎝ R∑
k=1

λk

√√√√√ 1∫
0

φ4
k (x)dx

⎞⎟⎠
2

= O
(

R
√

ln R
)

.

From Theorem 4.2 in Koltchinskii and Giné (2000):

E
(
�(2) (N)

)2 = O
(

N−1 R
√

ln R + R−3
)

.

By equating the two terms, R8 ln R � N2. Using the Lambert W function:

R8 � exp W
(

N2
)

� exp
(

ln N2 − ln ln N2
)

� N2

ln N

or R � N
1
4

ln
1
8 N

from which E 
(
�(2) (N)

)2 = O  
(

N− 3
4 ln

3
8 N
)

and �(2) (N) = OP

(
N− 3

8 ln
3

16 N
)

.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107437.
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1. Graphs

1.1. Cramér-von Mises Kernel
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Figure 1: Eigenfunctions of the Cramér-von Mises kernel based on a Monte Carlo method
(MC) with 10 points.
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