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Abstract
We consider measures of covering and separation that are expressed through max-
ima and minima of distances between points of an hypersphere. We investigate the
behavior of these measures when applied to a sample of independent and uniformly
distributed points. In particular, we derive their asymptotic distributions when the
number of points diverges. These results can be useful as a benchmark against which
deterministic point sets can be evaluated. Whenever possible, we supplement the rig-
orous derivation of these limiting distributions with some heuristic reasonings based
on extreme value theory. As a by-product, we provide a proof for a conjecture on
the hole radius associated to a facet of the convex hull of points distributed on the
hypersphere.
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1 Introduction

The study of the equidistribution properties of sequences and point sets on the hyper-
sphere has raised considerable interest in recent times, both in the deterministic (see,
e.g., [2, 9, 12, 19, 21, 22, 33, 38, 41]) and in the stochastic case (see, e.g., [13, 15,
18, 20, 26, 35, 36, 39] for independent and identically distributed random points and
[1, 4–6] for determinantal point processes). The aim of this paper is to prove, under the
assumption that the points are uniformly and independently distributed on the hyper-
sphere, asymptotic distributional results for some of the measures of equidistribution
introduced in the literature. We focus here only on measures that can be expressed
through maxima and minima of distances between points of the hypersphere. This
implies that we do not provide asymptotic results about Riesz’ energy (see, e.g., [33,
37, 38, 41]) as well as other Sobolev statistics on the hypersphere (see [18, 20, 27, 35,
36]), that will be studied in companion papers.

The measures that we consider can be connected to two problems on the hyper-
sphere. Covering measures concern covering problems, i.e., problems in which the
hypersphere is completely covered by the union of a collection of spherical caps. The
question is generally to guarantee coveringwhileminimizing either the size of the caps
when their number is fixed, or the number of caps when their size is fixed. Separation
measures concern packing problems, i.e., problems in which a collection of spherical
caps is located on the hypersphere without any overlapping between caps. The aim is
to maximize the number of caps while keeping their size fixed, or the size of the caps
while keeping their cardinality fixed.

For some measures related to covering and packing, we provide results concern-
ing their asymptotic distribution for a sample of points uniformly and independently
distributed on the hypersphere. Some of the results that follow are based on earlier
theorems proved in probability theory. We also give the asymptotic distribution of two
quantities, namely the geodesic radius and the hole radius, associated to each facet of
the convex hull of the points distributed on the hypersphere. In doing so, we provide
a proof of Conjecture 2.3 formulated in [13, p. 67]. Moreover, by comparing our
results with the lower bounds available in the literature for covering and separation
measures, we provide some further confirmation that it is easier to reach a good cov-
ering than it is to reach a good packing. In particular, random points perform rather
well when covering is concerned but their separation properties are not very good. Our
results bear a striking resemblancewith some recent results in stochastic geometry (see
[7, 16, 17, 42]).

This is the structure of the paper. In Sect. 2 we provide some definitions that will be
used in the rest of the paper. The results are stated in Sect. 3, while the corresponding
proofs are gathered in Sect. 5. Section 4 contains some reflections about the covering
and separation properties of random uniform points.

2 Definitions

Consider the hypersphere S
d ⊂ R

d+1 of radius one, endowed with the geodesic
distanceμ and theEuclidean distancem. If x·y denotes the inner product between two
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vectors, for x, y ∈ S
d we have μ(x, y) = arccos(x · y) and m(x, y) = √

2(1 − x · y).
Let B(x, r) := {y ∈ S

d : μ(x, y) < r} be the geodesic ball (or spherical cap) with
center x and radius r .

Consider N points XN = {x1, . . . , xN } independently and uniformly distributed
on S

d ⊂ R
d+1. The convex hull of the point configuration XN is a polytope that is

sometimes called (see, e.g., [40]) the “inscribing polytope”. The number of facets of
the polytope is itself a random variable fd . As the inscribing polytope is simplicial
with probability one, from the Lower Bound Theorem (see [3]) we have fd ≥ dN −
(d + 2)(d − 1) (the same value stated in [13, p. 63] for d = 2). Therefore, when N
increases, the number of facets increases too.

To each facet of the polytope a hole is associated, i.e., the maximal spherical cap
for the particular facet containing points of XN only on its boundary. We suppose that
the facets, as well as the quantities associated with them, are indexed by a subscript
k ranging from 1 to fd and are arranged in no special order. Let αk = αk(XN ) be
the geodesic radius of the k-th cap. Following [13], we define the k-th hole radius
ρk = ρk(XN ) as the Euclidean distance inRd+1 from the cap boundary to the center of
the spherical cap located on the sphere above the k-th facet, so that ρk = 2 sin(αk/2).

An interesting measure of uniformity is the geodesic covering radius (also called
mesh norm or fill radius, see [13, p. 62]) defined as

α = α(XN ,Sd) := max
y∈Sd

min
x j∈XN

μ(y, x j )

= sup {r > 0 : there exists x ∈ S
d with B(x, r) ⊂ S

d \ XN },

the largest geodesic distance from a point in S
d to the nearest point in XN or the

geodesic radius of the largest spherical cap containing no points from XN . It is clear
that α = max1≤k≤ fd αk . Another quantity is the Euclidean covering radius (although
the name mesh norm is also used, see [23])

ρ = ρ(XN ,Sd) := max
y∈Sd

min
x j∈XN

m(y, x j ),

whose properties have been studied in [39]. In this case too, ρ = max1≤k≤ fd ρk .

Now we pass to the measures linked to packing. Other measures are the separation
distance (see, e.g., [13, p. 62]) or minimum angle (see, e.g., [15, p. 1838])

θ = θ(XN ,Sd) := min
xi ,x j∈XN

i �= j

μ(xi , x j ) = min
x j∈XN

⎧
⎨

⎩
min
xi∈XN
i �= j

μ(xi , x j )

⎫
⎬

⎭
,

the largest nearest neighbor distance (see, e.g., [29–31])

θ ′ = θ ′(XN ,Sd) := max
x j∈XN

⎧
⎨

⎩
min
xi∈XN
i �= j

μ(xi , x j )

⎫
⎬

⎭
,
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and the maximum angle (see, e.g., [15])

θ ′′ = θ ′′(XN ,Sd) := max
xi ,x j∈XN

i �= j

μ(xi , x j ).

It is also possible to define the same quantities through the Euclidean distance. Indeed,
if we replaceμwithm, we get theminimum spacing (see, e.g., [8, p. 274]) orminimum
distance (see, e.g., [11, p. 654]) or separation radius (see, e.g., [23])

Θ = Θ(XN ) := min
xi ,x j∈XN

i �= j

m(xi , x j ) = min
x j∈XN

⎧
⎨

⎩
min
xi∈XN
i �= j

m(xi , x j )

⎫
⎬

⎭
.

The other corresponding quantities

Θ ′ = Θ ′(XN ) := max
x j∈XN

⎧
⎨

⎩
min
xi∈XN
i �= j

m(xi , x j )

⎫
⎬

⎭
,

Θ ′′ = Θ ′′(XN ) := max
xi ,x j∈XN

i �= j

m(xi , x j )

seem to lack a name.
Wewill need the following probabilistic definitions. The symbol

P−→ (
D−→) denotes

convergence in probability (in distribution) when N → ∞. A generalized gamma
random variable GG(α, β, γ ) is characterized by the probability density function
(pdf)

fGG(α,β,γ )(x) = αxβ−1

γ β/αΓ (β/α)
exp

−xα

γ
, x ≥ 0,

and the cumulative distribution function (cdf)

FGG(α,β,γ )(x) = γ (β/α, xα/γ )

Γ (β/α)
, x ≥ 0,

where γ ( · , · ) is the lower incomplete gamma function. The gamma random variable
G(β, γ ) corresponds to the previous casewhenα ≡ 1, the exponential randomvariable
E(γ ) corresponds to the case when both α ≡ 1 and β ≡ 1. AGumbel random variable
Gumbel(μ, β) is defined by the pdf and the cdf

fGumbel(μ,β)(x) = 1

β
exp

{

− x − μ

β
− exp

−(x − μ)

β

}

,

FGumbel(μ,β)(x) = exp

{

− exp
−(x − μ)

β

}

.
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A Weibull random variable Weibull(λ, k) is defined by the pdf and the cdf

fWeibull(λ,k)(x) = k

λ

(
x

λ

)k−1

exp

{

−
(
x

λ

)k}

, x ≥ 0,

FWeibull(λ,k)(x) = 1 − exp

{

−
(
x

λ

)k}

, x ≥ 0.

We will also need the constant

κd := 1

d
· Γ ((d + 1)/2)√

π Γ (d/2)
= Γ ((d + 1)/2)

2
√

π Γ ((d + 2)/2)

and the regularized incomplete beta function

Ix (a, b) := Γ (a + b)

Γ (a)Γ (b)

∫ x

0
ta−1(1 − t)b−1 dt

(see, e.g., [34, 8.17.2]). For the reader’s convenience, we restate Conjecture 2.3 from
[13, p. 67].

Conjecture 2.1 The scaled hole radii N 1/dρ1, . . . , N 1/dρ fd associated with the facets
of the convex hull of N uniformly and independently distributed random points on Sd

are (dependent) random variables from a distribution which converges, as N → ∞,
to the limiting distribution GG(d, d2, κ−1

d ).

3 Results

We start with the covering measures. The following theorem proves Conjecture 2.1.

Theorem 3.1 The hole radius is characterized by the asymptotic distribution

N 1/dρk
D−→ GG

(
d, d2, κ−1

d

)

for any k ∈ N. The same result holds replacing ρk with the geodesic radius of the
cap αk .

Theorem 3.2 The Euclidean covering radius is characterized by the asymptotic
distribution

N 1/d(ln N )(d−1)/ddκ
1/d
d ρ − d ln N − (d − 1) ln ln N + ln (d!(2κd)d−1)

D−→ Gumbel(0, 1).

The same result holds replacing ρ with the geodesic covering radius α.
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Remark 3.3 (i) The previous result generalizes [39, Cor. 3.4], where it is proved that

(
N

ln N

)1/d

ρ
P−→ κ

−1/d
d .

The same result holds for α. This is coherent with [8, pp. 276, 280–281], where it is
shown that ρ is of order N−1/d+o(1).

(ii) In the case d = 1, the previous result becomes

N

π
ρ − ln N

D−→ Gumbel(0, 1)

and holds in the same form for α. This is coherent with the fact that the expectation
Eα can be written as Eα = (π ln N )/N + πγ/N + o(N−1) (see [13, p. 63]), where
γ is the Euler–Mascheroni constant.

(iii) A heuristic justification for this theorem can be obtained as follows. From

Theorem 3.1 and the continuous mapping theorem (see, e.g., [43, p. 288]), Nρd
k

D−→
G(d, κ−1

d ). The asymptotic distribution of the maximum Mn from a sample of n
independent gamma random variables G(β, γ ) can be found, e.g., in [25, pp. 128,
156]:

γ −1Mn − ln n − (β − 1) ln ln n + lnΓ (β)
D−→ Gumbel(0, 1).

In our case, Mn would correspond to Nρd = max1≤ j≤ fd Nρd
j , β to d, and γ to κ−1

d .
This should be compared with the result (3) below. The two formulas differ in several
respects: first, each Nρd

j is not exactly distributed like a gamma random variable;

second, the random variables Nρd
j are not independent; third, the maximum is taken

over a random number of elements. For these reasons, it is hard to find an exact
correspondencebetween the elements of the two formulas.Nevertheless, their common
structure is clear.

Now we turn to the separation measures. Some of these results are already known,
but we present them here for completeness.

Theorem 3.4 The separation distance, the largest nearest neighbor distance and the
maximum angle are characterized by the asymptotic distributions

N 2/dθ
D−→ Weibull

((
2

κd

)1/d

, d

)

,

N 1/d(ln N )(d−1)/ddκ
1/d
d θ ′ − d ln N

D−→ Gumbel(0, 1),

N 2/d(π − θ ′′) D−→ Weibull

((
2

κd

)1/d

, d

)

.
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The asymptotic behavior of Θ and Θ ′ is the same as that of θ and θ ′, respectively.
For Θ ′′, instead, we have

4N 4/d(2 − Θ ′′) D−→ Weibull

((
2

κd

)2/d

,
d

2

)

.

Remark 3.5 (i) The result for Θ is coherent with the one in [8, p. 280], stating that
Θ = N−2/d+o(1).

(ii) The equality of the asymptotic distributions of θ and θ ′′ comes as no surprise,
as the pdf of μ(xi , x j ) for i �= j is symmetric around π/2 (see [15, Thm. 1] or [13,
Thm. 3.1]).We provide a heuristic justification of the asymptotic distribution of θ ′′; the
one of θ can be obtained through a symmetry argument. We suppose for one moment
that the N (N − 1)/2 random variables μ(xi , x j ) with i < j are independent. As the
distribution of these random variables has a finite right endpoint π , the asymptotic
distribution could be a Weibull distribution, provided the von Mises condition in [25,
Cor. 3.3.13] is satisfied. This is indeed the case with α = d. Moreover, the scaling
parameter cn appearing in [25, Thm. 3.3.12] is approximately equal to (N 2κd/2)−1/d .
The asymptotic distribution of (N 2κd/2)1/d(θ ′′−π) has, therefore, cdf exp {−(−x)d}
(see [25, p. 121]). The asymptotic result for θ ′′ is confirmed after an adequate rescaling.
What is remarkable is that the result is valid even if the random variables μ(xi , x j )

are dependent.
(iii) The difference between the results for Θ and Θ ′′ is due to the asymmetry of

the pdf of m(xi , x j ) for i �= j around 1. Indeed, the pdf is

fm(xi ,x j )(x) = 2dκd

(
x

2

)d−1

(4 − x2)d/2−1.

While the lower tail is similar to the one of μ(xi , x j ), thus justifying the asymptotic
equivalence of θ and Θ , the upper tail of the pdf behaves like 2d−1dκd(2 − x)d/2−1.
This means that it satisfies the von Mises condition in [25, Cor. 3.3.13] with limit
α = d/2. The scaling parameter cn of [25, Thm. 3.3.12] is approximately equal to
(2d−1N 2κd)

−2/d and this confirms the asymptotic behavior of Θ ′′.
(iv) In the previous remarks, we justified the asymptotic distributions of some mea-

sures of covering and separation under the unwarranted assumption that the elements
on which the extrema were taken were independent. Now, we show that this heuristic
reasoning can be misleading. The distribution of θ j := minxi∈XN ,i �= j μ(xi , x j ) can
be explicitly obtained as

P {θ j ≤ x} = 1 − P {θ j > x} = 1 − P {xi /∈ B(x j , x), 1 ≤ i ≤ N , i �= j}

= 1 −
[

1 − Isin2(x/2)

(
d

2
,
d

2

)]N−1
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from (1). From (2) this implies

P {Nθdj ≤ y} = 1 −
[

1 − Isin2(y1/d N−1/d/2)

(
d

2
,
d

2

)]N−1

→ 1 − e−κd y

or Nθdj
D−→ E(κ−1

d ). In the following, wewill reason as if all the Nθdj ’s were indepen-

dent copies of E(κ−1
d ). From the formula of the largest nearest neighbor distance, it is

clear that N (θ ′)d = max1≤ j≤N Nθdj . Therefore, this suggests (see [25, pp. 128, 155])

the incorrect formula Nκd(θ
′)d − ln N

D−→ Gumbel(0, 1) while the correct one (see
[30, p. 259]) is

Nκd(θ
′)d

2
− ln N

D−→ Gumbel(0, 1).

In the sameway, the formula of the separation distance yields Nθd = min1≤ j≤N Nθdj .

The minimum of N independent copies of E(κ−1
d ) is a E((Nκd)

−1) random variable.
Therefore,

P {N 2θd ≤ y} = P {Nθd ≤ N−1y} � 1 − e−κd y

andP {N 2/dθ ≤ x} � 1−e−κd xd . This suggests, at oddswith the result of the theorem,

that N 2/dθ
D−→ Weibull(κ−1/d

d , d). The reason for the omission of the term 2 in both
formulas is that both θ and θ ′ involve N (N − 1) distances but only N (N − 1)/2 are
really different.

4 Conclusions

The present paper provides some asymptotic distributional results for severalmeasures
of covering and separation. In these conclusions, we compare our resultswith the lower
bounds available in the literature for deterministic point sets.

When applied to a point set of uniformly and independently distributed random
points, the geodesic covering radius α and its Euclidean counterpart ρ have an asymp-
totic order of ((ln N )/N )1/d in probability. A lower bound on α, from which a similar
inequality can be obtained for ρ, is given by α ≥ cd N−1/d for a constant cd > 0
and it is achieved by spherical designs (see [10, p. 784]) that have thus the optimal
covering property. See also [8, p. 280] for the Euclidean covering radius. This shows
that random points almost have the optimal covering property, up to a logarithmic
factor.

For the same point set, the separation distance θ and the minimum distance Θ

have an asymptotic order of N−2/d in probability. It can be shown that the order
θ ≥ c′

d N
−1/d for a constant c′

d > 0 is best possible and point sets that achieve that
rate are called well separated (see [11, p. 654] for a review of the literature on the
topic). This shows that random points are not in general well separated.
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As a result of these considerations, we can confirm that, as stated in [8, p. 274],
“the covering radius [ρ] is much more forgiving than the minimal spacing [Θ] in that
the placement of a few bad points does not affect [ρ] drastically.”

5 Proofs

In the proofs, we will use the following notation. We say that Xn = OP(an) as
n → ∞ if, for any ε > 0, there exists a finite M > 0 and a finite N > 0 such that

P {|a−1
n Xn| > M} < ε for any n > N . It is clear that a−1

n Xn
D−→ X and a−1

n Xn
P−→ 1

both imply that Xn = OP(an) as n → ∞. We will also need the following lemma.

Lemma 5.1 Suppose rn(Tn − θn) →D W, where Tn ≥ 0, θn ≥ 0, and θnrn → ∞.
Then, for m ∈ N,

mrnθ
1−1/m
n (T 1/m

n − θ
1/m
n ) →D W .

Proof We start with writing rn(Tn − θn) as

rn(Tn − θn) = rnθn

(
Tn
θn

− 1

)

= rnθn

((
Tn
θn

)1/m

− 1

)
m−1∑

j=0

(
Tn
θn

)j/m

= rnθ
1−1/m
n (T 1/m

n − θ
1/m
n )

m−1∑

j=0

(
Tn
θn

)j/m

.

From rn(Tn −θn) →D W , we can state that Tn/θn = 1+OP(1/(θnrn)) and, provided
θnrn → ∞, Tn/θn →P 1 and

∑m−1
j=0 (Tn/θn) j/m →P m. Using Slutsky’s theorem

(see, e.g., [43, p. 34]), we finally get

mrnθ
1−1/m
n (T 1/m

n − θ
1/m
n ) →D W . �

Proof of Theorem 3.1 We show a property of the vector r(XN ) = (ρ1, ρ2, . . . , ρ fd )

that will be used below. If its elements are arranged in no special order, r(XN ) is
composed of fd identically distributed and dependent variables. Conditionally on fd ,
the distribution of the vector r(XN ) is invariant under permutations of the indices and
r(XN ) is a finite exchangeable sequence (see [24]).

From [13, Thm. 2.2], for p ≥ 0 we have

E

fd∑

k=1

ρ
p
k = cd,pN

1−p/d(1 + O(N−2/d))
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for a constant cd,p := 2κd2Γ (d + p/d)/((d + 1)Γ (d)(κd)
d+p/d) defined in [13,

p. 65] and, from [14, Sect. 2.5] and [13, p. 65],

E fd = Bd N · (1 + O(N−2/d))

for a constant Bd := 2κd2/((d + 1)(κd)d) defined in [13, p. 63]. We have

E

fd∑

k=1

ρ
p
k = E

⎧
⎨

⎩
E

⎡

⎣
fd∑

k=1

ρ
p
k

∣
∣
∣ fd

⎤

⎦

⎫
⎬

⎭
= E

⎧
⎨

⎩

fd∑

k=1

E[ρ p
k | fd ]

⎫
⎬

⎭
.

Now, conditionally on the value of fd , the vector (ρ1, . . . , ρ fd ) is a finite exchangeable
sequence. Then, because of exchangeability, E[ρ p

k | fd ] is independent of the index k
and we have

E

fd∑

k=1

ρ
p
k = E

⎧
⎨

⎩

fd∑

k=1

E[ρ p
k | fd ]

⎫
⎬

⎭
= E{ fdE[ρ p

k | fd ]} = E fdρ
p
k .

Now we consider the covariance Cov( fd , ρ
p
k ),

Cov( fd , ρ
p
k ) = E fdρ

p
k − E fdEρ

p
k ,

Cov( fd , ρ
p
k )

E fd
= E fdρ

p
k

E fd
− Eρ

p
k ,

Eρ
p
k = E fdρ

p
k

E fd
− Cov( fd , ρ

p
k )

E fd
.

From the Cauchy–Schwarz inequality we have

∣
∣
∣
∣
Cov( fd , ρ

p
k )

E fd

∣
∣
∣
∣ ≤

√

V( fd)V(ρ
p
k )

E fd
≤
√

V( fd)Eρ
2p
k

E fd
≤
√
V( fd)Eρ2p

E fd

where ρ = ρ(XN ,Sd) is the covering radius of XN on the sphere.
Now, we majorize V( fd) as in [44, Thm. 4.2.1],1 and Eρ2p as in [39, Cor. 3.3],

to get

∣
∣
∣
∣
Cov( fd , ρ

p
k )

E fd

∣
∣
∣
∣ = O

(√
V( fd)Eρ2p

E fd

)

= O

⎛

⎝
1

N

√

N

(
ln N

N

)2p/d
⎞

⎠

= O

(
(ln N )p/d

N (2p+d)/(2d)

)

.

1 This source considers the sphere S
d−1 ⊂ R

d but, as we are not interested in constants, this does not
change the bound.
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Therefore,

Eρ
p
k = E fdρ

p
k

E fd
+ O

(
(ln N )p/d

N (2p+d)/(2d)

)

= cd,p

Bd
N−p/d + O

(
1

N (p+2)/d

)

+ O

(
(ln N )p/d

N (2p+d)/(2d)

)

and

E(N 1/dρk)
p → cd,p

Bd
= Γ (d + p/d)

Γ (d)
(κd)

−p/d

= Γ (d + p/d)

Γ (d)

(

2
√

π
Γ ((d + 2)/2)

Γ ((d + 1)/2)

)p/d

.

This means that the raw moments of N 1/dρk converge to the raw moments of a
generalized gamma random variable GG(d, d2, κ−1

d ). Convergence of moments is
not in itself sufficient to guarantee convergence in distribution. The results in [28,
Sect. 5.2] show that this is indeed the case for generalized gamma random variables
whenever d ≥ 1/2. To get the distribution of αk we use the delta method (see, e.g.,
[43, p. 279]), i.e., the fact that cn(Wn − a) →D X , with cn diverging, implies that
cn(g(Wn)−g(a)) →D g′(a) ·X for g( · ) differentiable at a. The result is then evident
from the relation αk = 2 arcsin(ρk/2). �
Proof of Theorem 3.2 Let V be the Riemannian volume of the spherical cap of hole
radius ρ:

V = Iρ2/4

(
d

2
,
d

2

)

(1)

(see [13, (2)–(6)]). From [32, Remark on p.276] and [31, p. 664], we have

NV − ln N − (d − 1) ln ln N + ln
(
d!(2κd)d−1) D−→ Gumbel(0, 1).

According to [39, Cor. 3.4], Nρd/(ln N )
P−→ κ−1

d and ρ = OP(((ln N )/N )1/d). By
expanding V around ρ = 0 (see, e.g., [34, 8.17.22]),

V = ρd21−d

dB(d/2, d/2)
(1 + O(ρ2)) = κdρ

d + OP

((
ln N

N

)(d+2)/d)

, (2)

we get

Nκdρ
d − ln N − (d − 1) ln ln N + ln

(
d!(2κd)d−1) D−→ Gumbel(0, 1). (3)

In order to obtain the asymptotic distribution of ρ from that of ρd , we cannot use the
delta method (see, e.g., [43, p. 279]) as the centering of ρ depends on N . The uniform
delta method (see, e.g., [45, Sect. 3.4]) does not seem to work either. Therefore, we
use Lemma 5.1, where we identify

rn = N , m = d, Tn = κdρ
d ,
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θn = ln N + (d − 1) ln ln N − ln
(
d!(2κd)d−1

)

N
.

We have

θ
1−1/m
n =

(
ln N

N

)1−1/d(

1 + O

(
ln ln N

ln N

))

,

θ
1/m
n =

(
ln N

N

)1/d[

1 + d − 1

d

ln ln N

ln N
− ln

(
d!(2κd)d−1

)

d ln N
+ O

((
ln ln N

ln N

)2)]

.

At last, rn(Tn − θn) behaves asymptotically like

N 1d(ln N )(d−1)/ddκ
1/d
d ρ − d ln N − (d − 1) ln ln N + ln

(
d!(2κd)d−1).

Now we show the same result holds for α. Indeed,

ρ = 2 sin
α

2
= α + O(α3) = α + O(ρ3) = α + OP

((
ln N

N

)3/d)

,

N 1/d(ln N )(d−1)/ddκ
1/d
d ρ = N 1/d(ln N )(d−1)/ddκ

1/d
d α + OP

(
(ln N )(d+2)/d

N 2/d

)

.

�
Proof of Theorem 3.4 The results for θ and θ ′′ are in [15, Thm. 2]. The result for θ ′ is
a consequence of [30, p. 259] (see also [29]). It is not immediate, but can be obtained
applying Lemma 5.1 as in the proof of Theorem 3.2. The results for Θ and Θ ′ comes
from the ones for θ and θ ′ using the fact that Θ = 2 sin(θ/2) and Θ ′ = 2 sin(θ ′/2).

As far as Θ ′′ is concerned, in this case too, one has Θ ′′ = 2 sin(θ ′′/2) and θ ′′
= 2 arcsin(Θ ′′/2). Now, using sin x = cos (π/2 − x) and the double-angle formula
1 − 2 sin2 x = cos 2x , we get

2 − Θ ′′ = 2

(

1 − sin
θ ′′

2

)

= 4 sin2
π − θ ′′

4

= (π − θ ′′)2

4
+ O((π − θ ′′)4) = (π − θ ′′)2

4
+ OP(N−8/d)

from π − θ ′′ = OP(N−2/d). This implies that 2 − Θ ′′ = OP(N−4/d) and should
behave like (π − θ ′′)2/4. Thus,

4N 4/d(2 − Θ ′′) = [N 2/d(π − θ ′′)
]2 + OP(N−4/d).

From the continuous mapping theorem (see, e.g., [43, p. 288]), the asymptotic dis-
tribution of 4N 4/d(2 − Θ ′′) is the square of a Weibull ((2/κd)1/d , d). That is the
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distribution of a Weibull ((2/κd)2/d , d/2):

F[Weibull(λ,k)]2(x) = FWeibull(λ,k)(x
1/2) = 1 − exp

{

−
(
x1/2

λ

)k
}

= 1 − exp

{

−
(

x

λ2

)k/2
}

= FWeibull(λ2,k/2)(x). �
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