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ABSTRACT  
Agent-based modeling (ABM) is a simulation technique which has been 
increasingly integrated into the economic discipline in order to 
understand complex systems. However, most of everyday research 
activities rely on the researchers’ consensus concerning practical 
choices about modeling strategies, computational boundaries under 
scrutiny and the extent of empirical validation. Particularly lacking are 
reflections on the semantic construction of conceptual models. The 
paper reviews existing theoretical frameworks leading to 
the understanding of ABM as a technique where the cognitive 
processing instantiated by the instrument is distributed across different 
modeling layers, including conceptual, algorithmic and computational. 
These layers can be interpreted as an interlinked set of analogies. Then, 
the paper introduces a framework for assessing ABM conceptual 
adequacy and tests it on two families of models in the economics of 
innovation field.

ARTICLE HISTORY
Received 9 April 2024 
Accepted 11 August 2025  

KEYWORDS  
Epistemology; agent-based 
modeling; analogy; models 
in economics; economic 
methodology

1. Introduction

Agent-based modeling (ABM)1 is a simulation technique involving autonomous individual entities 
that behave according to a defined set of rules (e.g. Bonabeau, 2002; Grimm et al., 2005; Railsback 
& Grimm, 2019; Secchi, 2022). Characterized as computationally intensive (e.g. Casini & Manzo, 
2016), this technique enables researchers to model interaction dynamics by designing constituent 
units (Bonabeau, 2002), generating patterns unforeseen analytically (Humphreys, 2004) and investi-
gating emergent behaviors in complex systems.

Given these features and the extensive degrees of freedom granted to modelers, economics 
increasingly integrates ABM into its toolkit. In particular, the economics of innovation field, with 
its prevalence of non-linear patterns and emergent phenomena, is especially well-suited to employ-
ing this simulation technique to investigate both empirically grounded targets (e.g. Zhang & Voro-
beychik, 2019) and highly idealized contexts (e.g. Fagiolo & Dosi, 2003; Gilbert et al., 2014).2 Despite 
the growing success of ABM in economic and social modeling, questions remain regarding its theor-
etical underpinnings (see e.g. the detailed review of Anzola, 2021). Notably, some studies underline 
the contrast between practitioners’ discipline-specific interpretations of ABMs, and the struggles 
faced by these models to establish an independent niche in the broader simulation philosophy land-
scape (Anzola, 2021). Moreover, other works offer a more critical view of the epistemic value of ABMs 
in the social sciences, including economics (e.g. Arnold, 2014, 2019), which has been balanced by the 
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growing literature on the validation of ABMs with empirically grounded targets (Casini & Manzo, 
2016; Fagiolo et al., 2019). Yet, the same possibility to validate highly idealized simulation models, 
whether generalized or targetless (Weisberg, 2013), can leave room for contestation (e.g. Arnold, 
2019; Šešelja, 2021).

The present work aims to develop a method for evaluating the theoretical consistency of ABMs in 
the economic and social sciences. In doing so, it seeks to enhance the understanding of the meth-
odological and epistemic roles of abstraction and generalization in these models. To achieve this, 
two key aspects must be addressed. First, it is necessary to identify the root causes of epistemic chal-
lenges, including how various dimensions of a model influence its development and how the func-
tional orientation of ABMs impacts their structural design. Second, a robust theoretical framework 
must be established to rigorously assess how these dimensions interact to shape the model’s 
overall structure and function.

The study is therefore divided into two parts. The first part systematically presents a novel analo-
gical framework for interpreting ABMs. It begins by identifying and critically reviewing existing epis-
temic positions on ABMs, while re-contextualizing previous works within the theory of models and 
Computer Simulations (CSs) (e.g. Alvarado, 2021; Giere, 2002, 2007, 2010; Knuuttila, 2021b; Morrison, 
2015; Nersessian, 2002). Based on this background, we interpret ABM as a technique where the cog-
nitive processing instantiated by the instrument is distributed across different modeling layers, 
including conceptual, algorithmic and computational constituents.3 This approach breaks ABMs’ 
morphology down and, by analyzing the interaction among the constituents, enables us to investi-
gate the process of meaning generation in ABMs as an interlinked set of analogies. Consequently, a 
general analogical framework is introduced, integrated into the structure of ABMs, which supports 
three key epistemic concepts: (a) model adequacy, (b) model credibility and (c) the method of con-
ceptual reconstruction (see Sections 2.1.2 and 2.3.2). The second part applies the method of concep-
tual reconstruction on a specific case study engaging with two prominent families of models within 
the economics of innovation field, the Simulating Knowledge dynamics in Innovation Networks (SKIN) 
and the Schumpeter Meeting Keynes (K+S).

2. The analogical framework of ABMs

This section aims to sketch a comprehensive tool for evaluating ABM theoretical consistency. To 
reach this goal, the outlined method requires, above all, to be theoretically sound itself (Durán & For-
manek, 2018). Therefore, the section is divided into three parts. Section 2.1 begins by reviewing the 
main positions in the philosophy of ABM with a focus on the central epistemic challenges that 
involve model construction, assessment and interpretation. In doing so, we also include those 
characteristics, already framed in the context of theory-of-models and CSs literature, that have 
become particularly challenging within the ABM literature.4 Then, Section 2.2 examines the structural 
composition of ABMs and the inferential processes required to integrate their constituent layers, 
thereby enabling the extraction of meaningful conclusions from them. Building on that, Section 
2.3 contextualizes analogical inference within the previous investigation as a possible solution to 
some of the issues and problems introduced and presents the proposed evaluation methods.

2.1. The epistemic and representational challenges of ABM

Challenges in the philosophy of ABM are rather unique (Humphreys, 2004), as are the frameworks 
developed to face them.

In their simplest form, ABMs involve a plurality of agents, each following a set of rules that govern 
their interactions over a given time period. Information about the resulting interaction is then stored 
and analyzed. Crucially, there are no limitations beyond the choices made by the modeler,5 on the 
one hand, and the material constraints of the computational devices used, on the other.6
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Moreover, the generated dynamic is usually deemed interesting only as long as it is capable to tell 
something about a target object. Despite that, ABMs’ own logic figures as a blank page since mode-
ler’s choices shape both the kind of reference required and the nature of the boundaries of the 
chosen target. Modeling requirements such as customs, practices and benchmarks have been 
derived within the epistemic communities according to purposes, target realism, modeling strat-
egies and constraints imposed by material substrata of targets and simulations.7

These layered constraints highlight two main challenges faced in the epistemology of ABM. First, 
the resulting model must denote and accurately represent its target in relevant aspects, allowing for 
a meaningful transfer of understanding. However, this requirement is both a necessary condition 
and an expected outcome of the modeling process. In other words, the model is assumed to accu-
rately describe its target, allowing its features to be related to those of the target. However, these 
features can only be fully defined and assessed after the model construction process has been 
completed.8

Second, the use of this kind of simulations as epistemic instruments9 requires to enable the 
correspondence among semantically distinct domains, in a way that allows for different kinds 
of controlled misrepresentation (Pero & Suárez, 2016). This means that both representation and 
misrepresentation can coexist, once the main aim of the model is set towards a functional10

or a structural representation. In other words, this accounts for modeling substructures that func-
tionally represent the equivalent substructure in the target, without committing to strong iso-
morphism. For instance, the use of genetic algorithms to represent learning processes is not 
justified solely on the basis of their internal structures faithfully representing existing dynamics; 
rather, it is grounded in their capacity to approximate a dynamic of interest (see e.g. Chattoe, 
1996). However, the trade-off between structural closeness and output efficiency significantly 
impacts model interpretability, as it is impossible to evaluate ABMs solely based on their 
output. In point of fact, this epistemic dilemma greatly affects the assessment of modeling, 
since the same modeling process is inherently iterative (Nersessian, 2002). By repeatedly adjusting 
the model as needed, it is in principle always possible to accommodate the calibration on empiri-
cal data. In this regard, the nearly limitless degrees of freedom in model development bind ABMs 
to be representational, while demanding such representations to be, if necessary, about instantia-
tion of theories and conceptual objects. This distinguishes ABM from other simulation and data- 
driven techniques, where stronger, often theory-driven, modeling constraints facilitate easier com-
parisons among different models and their outputs in relation to their targets (see e.g. Seri et al., 
2022).

These issues resonate at multiple levels within the philosophy of ABM, leading to a variety of 
approaches and proposed solutions that are rarely mutually exclusive. Instead of forming a strict 
taxonomy, they encompass different research dimensions (for a review of philosophical impli-
cations of ABM, see, for example, Anzola, 2021; Secchi, 2022). In point of fact, ABMs must 
have specific invariant properties that enable the transfer of knowledge to previously unknown 
domains (e.g. Alvarado, 2021; Humphreys, 2004). Strategies to investigate these invariant proper-
ties include: 

. reducing epistemic activity to an already accepted model, such as the deductive-nomological 
method;

. demonstrating that epistemic operations are process-equivalent, by incorporating causality and/ 
or explainability into the discourse;

. emphasizing how the model’s structure or performance ensures stability in transferring meaning 
across domains.

Although these areas of research are interconnected, they are usually developed in different 
strands of literature. In the following, we will prioritize the third approach, focusing on the proper 
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mapping between simulations, targets and theories tied to specific modeling purposes. This will lay 
the groundwork for exploring its main implications in other domains.

2.1.1. Four approaches
By looking at the way in which there is consistency in (or mapping of) the transfer of meaning 
between targets and simulations, four main approaches can be identified. It should be 
noted, however, that authors may employ hybrid approaches or ones that do not fit neatly into 
rigid categories. In the reminder of the subsection, we present an overview of these four approaches.

The Minimal Ontological Commitment Approach. This approach relies on consensus within the 
community to define the model’s uses and applicability based on agreed-upon best practices.

The general aim of the minimal commitment to ontological positions is to intentionally avoid the 
intricacies typical of the philosophy of simulations (e.g. Dosi & Roventini, 2019). In such a context, the 
concept of virtual laboratories is often employed to provide narrative cohesion in specific model 
developments, by viewing ABMs as quasi-experiments and tools for constructing counterfactual 
scenarios in artificial societies (e.g. Anzola, 2021; Casini & Manzo, 2016). This strategy led to major 
advancement by suggesting rules for model construction regarding purposes (Edmonds et al., 
2019; Edmonds & Meyer, 2017; Epstein, 2008; Grüne-Yanoff, 2013), and by developing quantitative 
methods for model calibration and validation (e.g. Grazzini et al., 2017; Guerini & Moneta, 2017; Lam-
perti, 2018; Ligmann-Zielinska et al., 2020; Platt, 2020; Seri et al., 2021).11 The primary limitation of 
these approaches is that they offer practical insights without fully clarifying key elements within 
the chosen strategies (e.g. Ahrweiler et al., 2004; Gilbert & Ahrweiler, 2005; Gilbert et al., 2018). 
For instance, benchmark rules based on practitioners’ experience do not offer any specific conditions 
for generalization, other than suggesting a possible (limited) application (e.g. Edmonds et al., 2019). 
Moreover, methodological and statistical suggestions remain largely unrelated to each other. While 
they may provide detailed application rules that heavily depend on available data for calibration and 
validation, they lack guidance on how to adjust the model (e.g. Grazzini et al., 2017; Guerini & 
Moneta, 2017; Lamperti, 2018; Ligmann-Zielinska et al., 2020; Platt, 2020; Seri et al., 2021). In 
general, assumption development, model design and their successive evaluation are left to the 
modeler’s expertise.

The Generative-Deductive Approach. The idea behind this approach is that explanations in 
ABMs come from the structure of the model itself, which is derived axiomatically as a generating 
rule (e.g. Epstein, 2006). A refined deductive approach can be formulated within the inferential 
view, where simulation is framed as a broader argumentative tool that also fulfills an experimental 
function (Beisbart, 2012, 2018). This refined version aligns with the nomological-deductive method, 
as it involves the testing of specific hypotheses (Mauhe et al., 2023; Troost et al., 2023).

The Structural Similarity Approach. In this framework modelers assign a model to a target 
within a specific scope, justified by adequacy and two fidelity criteria: dynamical fidelity, that is 
output proximity to the phenomenon under investigation, and representational fidelity, which 
evaluates ‘how well the structure of the model maps onto the target system of interest’ (Weisberg, 
2013, p. 41). Both criteria rely on a measure of ‘closeness’ (Weisberg, 2013). The consistency of the 
mapping process is achieved by ontologically restricting the model to mathematical models (Weis-
berg, 2013). This approach addresses the issues related to mapping consistency by emphasizing the 
need for context-based evaluation procedures. This can be achieved by defining a measure of simi-
larity (Weisberg, 2013), by individuating homomorphisms among constituents based on relevance 
and similarity (Boge, 2020), or using similarity and analogy as ranking parameters within established 
empirical models (e.g. Casini, 2014; Manzo, 2022). In the first case, Boge (2020) accounts for homo-
morphic transfer from mathematical rules to the computational constituent, via discretized, compu-
terized and compiled models. Notably, he explicitly refers to these transfers as analogical inferences 
based on formality and relevance across different systems. In the second case, Manzo (2022) justifies 
model selection primarily by appealing to a pluralist account of causality in ABM, which serves as a 
binding element with empirical soundness. This reinforces a claim to the structural nature of the 
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ABMs under scrutiny. In any case, the source of justification remains entirely on the empirical ade-
quacy to the available data.

The Structural Representational Approach. Graebner (2018) integrates key elements of the 
Weisbergian ontology into a novel representational framework derived from the DEKI framework 
(Frigg & Nguyen, 2016). This framework, which is named after the four steps of the model, that 
are Denotation, Exemplification, Keying up and Imputation, endorses a fictionalist perspective 
describing the act of modeling as designing games of make-believe or narrations portraying 
targets, transitioning from model-specific features to those ascribed to targets (Frigg & Nguyen, 
2016).

2.1.2. Limits and challenges of the four approaches
To assess the theoretical consistency of ABMs, an epistemic framework should explain how a rep-
resentation may work both as a constructive principle and as a validated object. In point of fact, 
this would enable us to define the conditions for ensuring model adequacy and model credibility. 
We consider a model ‘adequate’ if its simulation and the relationships among constituents are mean-
ingfully connected to the theoretical background and aligned with the chosen target, based on the 
modeling purpose (e.g. Parker, 2020), even in the absence of representation. A model is deemed 
‘credible’ when it is considered adequate and its simulated output is regarded sufficiently close to 
the target output (see Gelfert, 2019). Therefore, the limits of the existing frameworks cannot be 
underestimated, as different approaches come out with different trade-offs. First, even if a 
minimal ontological commitment has proved to be successful in some contexts, the absence of a 
satisfactory framework for evaluating the appropriate mapping between theory, model and target 
undermine the validation of the theory. Second, the generative-deductive framework marginalizes 
the role of approximation and randomness. As a matter of fact, the deductive approach does not 
reflect the actual inferential content of ABM, in which outputs aggregate multiple model runs 
under known constraints and model correctness ensues from stability of runs within a predefined 
range. Moreover, even in its refined version, the validity of the premises in the argument, especially 
regarding model adequacy, can only be assumed. Thus, instead of describing the inherent inferential 
structure of ABMs, the scope of this framework lies in sketching out the potential use of the model 
under either specific requirements (Troost et al., 2023) or postulates (Mauhe et al., 2023). Third, the 
structural similarity approach faces several issues in delimiting the mapped object. In fact, in the 
Weisbergian construal framework, the adequacy of the model is found through tailored arguments, 
while the Boge (2020) model is too rigid to effectively explain highly idealized ABMs in social science, 
such as the Schelling model. In this case, rules may not truly align with actual agents in relevant ways 
(Boge, 2020), as no clear criteria for selecting variables are provided. As such, incorporating an extrin-
sic principle for empirical validation, for instance the resemblance between the target and 
the simulation, is unhelpful. In general, this approach overlooks the existence of multiple models 
that can explain the target (equifinality, see e.g. McCulloch et al., 2022) and the possibility of 
having several outputs arising from the same model (multifinality, see e.g. Valogianni & Padmanab-
han, 2022). Lastly, the structural representational approach remains silent on the ontogenesis of the 
model. In particular, it fails to explain how the DEKI phases are implemented. Moreover, it outlines 
conditions that must be simultaneously met to evaluate a correct representation, even though the 
explanation unfolds in sequential phases. In addition, it is unclear how the denoted elements and 
internal relationships in the conceptual constituent justify the variable choices in the computational 
constituent, since the use of the DEKI account is limited to the mapping between the computational 
model and the target.

A further consideration may help us move in a different direction. In ABM, meaning arises from 
the cross-reference within and among the elements of the different constituents, such that the 
overall cognitive task of creating and sustaining meaning is inherently distributed. This bears 
several epistemic consequences. First, the modeler’s interpretation of the constructed ABM is 
neither complete nor necessarily correct due to the complex decision-making process implicated 
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in developing the different model constituents.12 Second, knowledge generation processes must 
rely on the integration of model constituents, assumptions, empirical data, theoretical frameworks, 
benchmarks and epistemic communities from various, heterogeneous, sources (Giere, 2002; 
Magnani, 2017). Third, the epistemic value of such integration is bound by both the characteristics 
of the model and its intended use.13 As a result, the epistemic justification for transferring meaning 
between a simulation and its target is obtained by decomposing the process into analyses of how 
meaning is conveyed within each modeling layer relative to the intended purpose. Thus, evaluating 
an ABM requires moving beyond a purely pragmatic target–model correspondence to include the 
target, the purpose, the theoretical background and the model’s constituent layers as integral com-
ponents of the assessment, thereby offering a theoretical justification for the previously normative 
definition of ‘model adequacy.’

Furthermore, the assessment of the model’s adequacy may occur during different phases, both 
when the modeler revises or changes parts of the model, and later, after the model’s completion. 
Although this assessment happens in different contexts, and therefore retains different levels 
of epistemic strength, it involves similar operations. During the modeling phase it lies within the ver-
ification process, whereas after the model completion it is a form of validation.

The next section examines the internal structure of ABMs, with a focus on how meaning is trans-
ferred across constituents through specific inferential structures.

2.2. Model constituents and (their) inferential structures

Following the previous discussion, this section turns to the internal architecture of ABMs with the 
aim of clarifying how meaning is conveyed across their constituent layers. It introduces the three 
principal components of an agent-based model: the conceptual, algorithmic and computational 
constituents, as discussed in previous literature (e.g. Durán, 2020; Graebner, 2018), and examines 
the inferential structures that support their integration. The analysis shows how theoretical consist-
ency relies on the coherence of these internal transitions, which underpin both model construction 
and epistemic function. Section 2.2.1 outlines each constituent. Section 2.2.2 then examines the 
inferential structures that mediate the transfer of meaning between them.

2.2.1. Computational, algorithmic and conceptual constituents
The computational constituent is the coding and the structure behind it. This is the result of program-
ming activities that form the formal structure of a simulation model. It includes, for example, the use 
of databases, libraries and predefined functions (e.g. pseudo-random number generators) on a phys-
ical computer. This definition merges the notion of ‘simulation model’ in Durán (2020) and the ones 
of ‘computerized’ and ‘compiled’ model of Boge (2020). Two aspects are crucial here. First, the fea-
tures of the computational component require an environment. And this should be appreciated in 
socio-technical terms since different scientific and technical communities offer different insights 
useful to guide modelers on the choice of programming language, computational templates and 
the correspondence between theories, data and the simulation model.

The algorithmic constituent involves the actual procedures and the rules that make outputs poss-
ible given the inputs. Since this element specifies the formal procedures and rules that are then 
translated into the computational constitutent through coding, the description of the algorithmic 
constituent may partially overlap with the conceptual constituent (Boge, 2020; Weisberg, 2013). 
This relates to the fact that algorithms are typically expressed in flowcharts and pseudo-code and 
they are partly subsumed within the programming language environment.

The conceptual constituent is generally specified by a comprehensive description, where formu-
lations, model origin, intended scope and strategies are collected through annotations, that may 
take the form of scientific papers. Some scholars connect it directly to the formal structure of the 
model (e.g. Weisberg, 2013). The use of high-level languages for implementation complicates this 
characterization, since most languages allow to label variables directly within the code, making 
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the ambivalence of some conceptual constituents more apparent. A tool to help modelers reflect on 
the intricacies of the conceptual constituent is the ODD protocol (Overview, Design, Detail; see 
e.g. Grimm et al., 2020). From this tool and the way in which concepts are typically defined, it is 
apparent that this constituent cannot be simply reduced to a block of axioms (Borgonovo et al., 
2022; Giere, 2006). On the contrary, the conceptual structure is formed by an intertwined net of con-
stitutive building blocks (Berger et al., 2024; Boero & Squazzoni, 2005), i.e. clearly identifiable portions 
of a model that, due to their characteristics, are involved in a generative process aimed at fulfilling 
some kind of abstract dynamic called principle (Borgonovo et al., 2022). It is worth noting that the 
definition of building blocks emphasizes their role as constitutive units of a process or mechanism, 
rather than specifying the exact nature of the mechanism they instantiate. Building blocks are there-
fore both modular and decomposable into their own components, which may also be building 
blocks. Conversely, principles are teleological in nature: they point to purpose-oriented, high-level 
elements, either embedded within the model’s initial assumptions or anticipated as outcomes. Con-
sidered together, principles and building blocks offer a complete picture of the theoretical side of the 
model (Figure 1).

2.2.2. Inferential structures
The epistemic justification of ABMs depends on how meaning is transferred both internally, across 
the model’s constituents, and externally, toward the target system the model aims to represent. 
Coherent inferential links are thus needed to ensure that meaning is appropriately conveyed 
across these layers, in order to explain (a) the relationships between the constituents described 
above and (b) the connection between the simulation output and its target. Of course, there are 
other types of mapping, for instance, the consistency between the empirical data and the internal 
workings of the model. In this paper, our claim is primarily focused on (a) and (b). That is, assump-
tions encoded at the conceptual level must be traceably transformed into algorithmic procedures 
and, in turn, into computational operations.14 However, neither purely deductive inference nor a 
reliance on induction provide the necessary reliability and flexibility. On the one hand, deduction 
fails in the presence of digitization, approximation and idealization (e.g. Weisberg, 2013), since it 
is associated with a deterministic logic that is incapable of mapping the workings of CSs in 
general, and ABMs in particular. On the other hand, induction is a weak notion (Magnani, 2009). 
As previously pointed out, ABMs cannot be evaluated solely based on their outputs since the risk 
of overfitting or ad hoc adjustments is always present. Any form of explanation relying on an induc-
tive iteration requires an external semantic justification, e.g. in the form of an assumption concerning 
a mechanism or a regularity. This is true also when relying on a probabilistic notion of causality 
(e.g. Granger, 1980; Mosconi & Seri, 2006).15

Figure 1. The relationships between conceptual, algorithmic and computational constituents.
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A third form of inference, abduction, seems prima facie a better candidate as it allows for making 
inferences to the best explanation (e.g. Douven, 2021; Magnani, 2009) or for generating new hypoth-
eses (e.g. Douven, 2021; Magnani, 2009). We consider abduction as formally entailing a propositive 
‘affirming the consequent’ fallacy (Magnani, 2009) and, for that reason, we exclude from the present 
consideration what Thagard (1988) defines as analogical abductions, which entail the use of analo-
gies for abductive purposes. Thus, abduction can be either theoretical, i.e. deriving from existent 
models, or manipulative, which applies actual changes to the target involved (Magnani, 2009). More-
over, it sustains inferences in different-domain contexts. However, it has some limitations. First, it is 
not transitive (Magnani, 2009). Second, although the entire process of justifying a simulation can be 
viewed as abductive reasoning, the internal justifications within the model are not inherently abduc-
tive. Therefore, it is not apt for being used as an inference under letter (a) above. For instance, the 
choice of a specific computational template may appear justified by existing literature on previous 
results. Yet, the outcomes from applying this template to the current case are not warranted by past 
applications, thus limiting its use as a form of abductive analogy (e.g. Boge, 2020; Thagard, 1988). As 
such, abduction plays a fundamental role in the actor-model interaction, but does not explain either 
the construction process, or the relations within the model.

2.3. On analogy and ABM

Another form of inferential argumentation is analogical inference. This form appears to be tackling 
with representation at a different level than induction, deduction and abduction because it is not 
specified by formal logic to the extent those three forms are. Indeed, CSs have explicitly been con-
sidered as analogies with respect to three aspects: the mapping over different substrata as comput-
ing digital machines (Boge, 2020; Symons, 2008b; von Neumann & Kurzweil, 2012), their internal 
formal structure (Bunge, 1973)16 and their heuristic power (e.g. Edmonds et al., 2019; Hartmann, 
1996). Therefore, it appears to be at least appropriate to use the notion of analogy as a perspective 
to address the challenges discussed above. The remainder of this section clarifies how analogical 
inference can be systematically unpacked and evaluated in the context of ABM.

2.3.1. Analogical inference and conceptualization
An analogy is a comparison relying on some kind of extensional or intensional similarity (Melandri, 
2004) between at least two objects (e.g. Bartha, 2022), properties (e.g. Juthe, 2005), relationships 
among properties (e.g. Bartha, 2022; Juthe, 2005; Melandri, 2004) and operations among properties 
(e.g. Alvargonzález, 2020; Simondon & Adkins, 2020). This form of comparison allows for highly 
complex and flexible considerations. First, analogies are fruitful not only for same-domain but 
also for different-domain inferences (e.g. Bartha, 2022; Boge, 2020; Juthe, 2005). Second, analogies 
can be positive, indicating an accepted correspondence with a similar relationship, negative if the cor-
respondence is invalid, or neutral if the status of correspondence within the target is unknown. Con-
sequently, they may hold despite some distortions in representation (Hesse, 1966). Third, analogies 
can be transitive (Bunge, 1973). Lastly, analogies are implied whenever a logical determination is not 
possible and either a shift is required between particular contents or forms (inferential), or a gener-
alization and a novel interpretation is required (conceptual) (Melandri, 2004).

The contemporary analytical study of analogy has spanned logic (e.g. Barbot et al., 2019; Holyoak 
et al., 2010; Juthe, 2005; Pietsch, 2019; Schoonen, 2022), philosophy of science (e.g. Bunge, 1973; 
Guala, 2010; Hesse, 1966; Melandri, 2004; Nersessian, 2008), cognitive (e.g. Gentner, 1983; Gentner 
& Hoyos, 2017) and computational (e.g. Holyoak et al., 2010; Holyoak & Thagard, 1995) traditions. 
Here, we primarily reference Bartha’s articulation model (2010) due to its preeminence and general-
ity in the examination of scientific analogies.

From a formal standpoint, an analogy is constituted by projecting an element of a source (or Ana-
logue) onto an element of a Target-Subject. Therefore, its strength is defined by its internal structure. 
First, the deeper the relations among the known similarities within the source and the element that 
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must be projected on the target, the stronger the relation is likely to be. These vertical relations, i.e. 
those interconnected internal characteristics of the Analogue that one is willing to map, ensure prior 
association. Then, horizontal correspondence, called potential for generalization, unifies the source 
and domain by the presence of an element of the target within the positive analogy (overlap), 
and the absence of a defeating condition in the analogy (no-critical-difference). Moreover, analogical 
inference encompasses various modes of association, whose range encompass, among others, (a) 
predictive, (b) explanatory, (c) functional or (d) correlative inferential structures (Bartha, 2010). Here, 
conditions of an analogy are explored based on these modes of association and the form of similarity 
involved (Bartha, 2010). This overall depiction raises two concerns in the context of ABM (Figure 2).

First, the Barthian framework is designed to provide the foundations for a theory of individual 
scientific analogy. As such, its scope is limited to simple analogies as it may be practically challenging 
to interpret and handle multiple and nested analogies.17 However, while this condition is the most 
tractable, in the present context of ABM it is also necessary to ensure that an analogical framework 
can accommodate nested analogies. In this respect, Bunge’s (1973) treatment of simulation provides 
a pertinent precedent. In fact, he posits two constraints for any simulation: first, the simulated object 
must be contagiously analogous to its target, that is related by a transitive analogical relation, and 
second, the analogy must possess significance, whether intrinsic or conferred by a third party. 
Accordingly, a simulation can be regarded as supported by multiple, potentially nested, analogies. 
Nevertheless, to avoid circularity or other inconsistencies, we may constrain nested analogies to 
be valid only if, at each level of abstraction (LoA) (e.g. Floridi, 2008, 2011; Symons, 2008a), at least 
one element of the analogue corresponds to an element of the target. This solution further 
affords the advantage of accommodating different kinds of morphisms according to context and 
level of analysis.

A second point concerns the evaluation of analogies. Criteria are contextually embedded in the 
field of analysis and the interplay between vertical and horizontal relations.

In order to address these two critical points, a pragmatic evaluation of each analysis is required. 
This must embrace: 

Figure 2. The structure of an analogical inference where the source S maps a property PS1 onto a similar property PT1 of the 
target T by association  L1 . As it can be seen, PS1 is bound within the source by the vertical relations PS4, . . . , PS5 composed 
by PS7, . . . , PS9.
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. the context of the analogy;

. the explicit or implicit purpose behind the analogy formulation;

. the structure of the analysis concerning both context and purpose.

Hence, analogy evaluation involves a dual a posteriori analysis. The first one is related to con-
ditions derived from the specific field where the analogical argument is constructed. The second 
one concerns the instantiated argument and its purpose. This approach is not unique. Regardless 
of the theoretical point of departure, assessing inferential robustness in analogical reasoning 
requires to identify a set of anchors within a specific analogy form and discipline, pragmatically ident-
ified with clear structural meaning. Differences among the structure-mapping theory (e.g. Gentner, 
1983; Gentner & Hoyos, 2017), the multi-constraint theory (e.g. Bartha, 2010; Holyoak & Thagard, 
1995), the case-based reasoning (e.g. Bartha, 2010) and the probabilistic-analogical framework 
(e.g. Holyoak et al., 2010) can be found in the updating mechanism underlining this search. 
Bartha (2010) outlines a three-stage process to ensure analogy robustness: 

(1) Elaboration of prior association by considering the category of the analogy and the precondi-
tions of the prior association: prioritizing vertical ties is crucial, as the analogy’s strength is con-
strained by its source argument.

(2) Determination of relevance of horizontal ties: further elaboration of prior association may be 
necessary at this stage.

(3) Assessment of potential for generalization, in order to connect source and target.

2.3.2. Analogy and ABM (What does it mean for ABMs to be constituted by analogies)
The concept of analogical inference preserves the epistemic value of modeling since it enables 
structural decomposition and interpretation of semantic transfer within different model constitu-
ents. As such, this provides us both with a structural interpretation of the transfer of meaning 
among the different constituents and with a method to investigate model adequacy. Units of 
analysis and primary units of analogical mediation are here the building blocks. Each building 
block embodies a specific portion of the model’s theoretical content and serves as a locus 
where inferential links can be established across layers. That is it acts as an ‘anchor’ through 
which conceptual assumptions are transduced into algorithmic logic and encoded in compu-
tational form. Treating building blocks analogically means that each must support both vertical 
coherence (within the conceptual layer) and horizontal relevance (toward the target domain), 
while also maintaining inferential continuity with its algorithmic and computational counterparts. 
As such, model adequacy decomposes into three parts: (a) conceptual constituent adequacy to the 
target, (b) conceptual constituent adequacy to the algorithmic constituent, and (c) algorithmic con-
stituent adequacy to the computational constituent. These three phases mirror the structure 
offered by Bartha’s (2010) articulation model. For example, the adequacy of a conceptual constitu-
ent to a target is determined by: 

(1) The coherence of the conceptual constituent according to state-of-the-art research and the rela-
tive embeddedness of its building blocks in the overall conceptual model.

(2) The presence of strong horizontal links between the conceptual constituent and the known 
interpretation of the target through state-of-the-art research and known empirical regularities 
of interest, for the majority of relevant properties not directly under investigation, i.e. the neigh-
boring properties.

(3) The absence of defeating conditions, that is negative analogies within the core of the constitu-
ent concerning the target which directly affect the interpretability of their neighboring 
properties.
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The coherence of a conceptual constituent, that is its vertical associations, is assured through the 
internal coherence of its parts, i.e. the building blocks, and the overall principles governing their 
combination.

Similarly, the adequacy of the conceptual constituent to the algorithmic constituent is deter-
mined by: 

(1) The formal consistency in the internal relations of the algorithmic constituent.
(2) The presence of strong horizontal links between the conceptual and the algorithmic constitu-

ents for any of the mapped properties.
(3) The absence of processes outside the scope of the conceptual constituent.

These conditions are guaranteed through conceptual transduction,18 algorithmization and vari-
able assignment, hereafter referred to as labeling. Conceptual transduction and algorithmization 
involve creating and selecting computational templates, while labeling semantically denotes the for-
mulation, ensuring adherence to the conceptual constituent. The correctness of the assignment 
depends on whether the behavior of a given agent or a collective of agents within the conceptual 
constituent reflects the formalization. Furthermore, the adequacy of the algorithmic constituent to 
the computational constituent progresses through translation and encoding. This phase is subject to 
conditions akin to those stated above, as the translation phase involves finding a compromise on the 
programming language ecosystem.

As such, model adequacy is not a priori assured, but can be assessed. In fact, each building block 
represents a coherent portion of the conceptual model, grounded in a theoretical principle, and 
functions as a bridge across model layers, enabling analogical transfer from conceptual assumptions 
to algorithmic logic and computational implementation. This layered connectivity requires each 
block to exhibit internal coherence, resemblance to the chosen target and implementation traceabil-
ity. In this context, abstraction and composition play a fundamental role in the epistemic reconstruc-
tion of the model. Abstraction refers to the process of isolating the underlying theoretical 
assumptions embedded within a building block, especially when they are not explicitly stated but 
instead encoded in algorithmic or computational structures. Composition, on the other hand, 
refers to the integration of these blocks into a coherent explanatory architecture, allowing one to 
assess whether the set of assumptions forms a structured and interpretable whole. Together, 
these operations contribute to clarifying both the internal coherence of individual components 
and their systemic alignment across modeling layers.

Here, such assessment can take two different forms: during the modeling construction as a form 
of theoretical verification, and once the model is deemed finished as theoretical validation. While the 
former comes at the very heart of the modeler’s activity, and often resolves itself in evaluating 
several modeling possibilities by engaging with accustomed best practices within the epistemic 
community of reference, the latter has not received so far enough attention. Potentially, we can dis-
tinguish between model reconstruction and conceptual reconstruction. Model reconstruction, simply 
stated, implies the replication of the entire ABM under scrutiny, whereas conceptual reconstruction 
evaluates the correspondence between theory, target, the conceptual constituent and the algorith-
mic constituent. Here, conceptual reconstruction plays a key role: on the one hand, it is a necessary 
phase in model reconstruction; on the other hand, it fulfills the need of a method for evaluating the 
theoretical consistency of an ABM. Two strategies can be applied to achieve this goal. The first one 
entails the systematic conceptual reconstruction of the conceptual constituent according to the 
three phases formerly described (Figure 3).

The second strategy defines a minimal reconstruction, that is focused on searching for contextual 
negative analogies vis-a-vis the target of the model to screen if there are plain defeating conditions. 
Indeed, abstractions and idealizations are essential in modeling but require justified analyses of their 
impact on the model based on state-of-the-art research. Such a minimal reconstruction allows for a 
rapid search for the conceptual weaknesses of the model.
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Lastly, the analogical conception of ABM crucially contributes to model interpretation and evalu-
ation of model credibility. Different purposes entail distinct inferential uses of analogy and necessi-
tate to focus on either the algorithm’s structure or output. The next section illustrates a case study of 
a minimal conceptual reconstruction in the economics of innovation field.

2.3.3. Operationalizing conceptual reconstruction
Building on the three inferential mappings, we focus here on the conceptual constituent of an 
existing ABM, providing an evaluation roadmap for conceptual building blocks and principles 
divided in four stages. The roadmap is valuable for both systematic and minimal conceptual 
reconstructions.

Block identification and principle alignment. First, discrete conceptual building blocks 
should be identified. This result is reached by looking at the modular components embodying 
a specific motivating design principle. Since building blocks are compound structures, these 
can be further inspected in their constitutive items. Each discrete conceptual block 
(e.g. ‘network formation’ or ‘innovation hypothesis’) is extracted from the model text, and its 
motivating design principle (e.g. heterogeneous collaboration or endogenous innovation) is 
recorded. These blocks are typically reconstructable from the model documentation or theoretical 
background and correspond to coherent assumptions that play a distinct role in the model’s con-
ceptual logic.

Conceptual ! Target adequacy. Each block is evaluated for internal coherence with respect to 
state-of-the-art theory and assessed for its embeddedness in the overall conceptual model. The pres-
ence of horizontal links to established interpretations of the target is verified, and it is ensured that 
no defeating conditions compromise its adequacy to the target under investigation. In accordance 
to the previous definition, a defeating condition entails any assumption, abstraction, or simplification 
that, once made explicit, undermines the intended correspondence between the block and the 
target system. For instance, assuming fixed agent behavior in a context that requires adaptive learn-
ing, or excluding institutions from a model of institutional innovation, would constitute a defeating 
condition.

Conceptual ! Algorithmic mapping. Published rules or flowcharts are examined to confirm 
that each conceptual element is represented by a corresponding formal component. It is verified 
that variable names and procedures reflect the original conceptual content transparently, and 

Figure 3. Conceptual reconstruction as mediator tool to evaluate the simulated interaction in relation to constituents assump-
tions and idealizations.
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that no extraneous processes have been introduced. The mapping is considered successful when the 
implemented logic preserves the structure and intent of the original assumption.

Conceptual ! Computational tracing. Finally, we verify that each concept appears as a self- 
standing construct in the code, class, function or module, whose interface and attributes directly 
mirror the intended conceptual entity. This includes checking whether the code implementation 
preserves semantic continuity with the conceptual structure, and whether the block can be traced 
across layers without distortion.

The outcomes populate a conceptual reconstruction matrix, with rows for conceptual blocks and 
columns for each of the four stages. This matrix makes explicit the analogical commitments of the 
model’s theory, highlights any critical mismatches, and provides a clear blueprint for subsequent 
algorithmic validation and code review. Cells are populated with brief qualitative assessments 
(e.g. ‘adequate,’ ‘partial,’ ‘missing’) or explanatory remarks, allowing for targeted diagnosis and 
revision.

3. ABM in the economics of innovation field

Innovation arises endogenously within economic systems, displaying non-linear emergent patterns 
from interactions among heterogeneous actors (see e.g. Hall & Rosenberg, 2010). As such, it has been 
extensively investigated via ABM, making it an ideal case to explore the analogical roots of economic 
ABM. This section evaluates two influential ABMs in the economics of innovation field, namely the 
Simulating Knowledge dynamics in Innovation Networks (SKIN) by Ahrweiler et al. (2004), Ahrweiler 

Table 1. Core building blocks, principles, characteristics & limits of original SKIN model.

Building Block Implementation
Underlying 

Principle Characteristics and limits

Agent Firms instantiated with kene triplets (each 
framed with capability, ability and 
expertise) and capital stock.

Heterogeneous 
agents

Differentiates firms by knowledge 
endowment; omits consumer/household 
heterogeneity and all institutional 
variation.

Knowledge 
engine

Genetic search: ±1 ability mutations each 
turn; capability × ability determines 
technology; ability × expertise 
determines quality.

Endogenous 
innovation

Redefines innovation intensity based on 
past failures; captures incremental and 
radical R&D but excludes path-dependent 
lock-in, external knowledge sources and 
institutional R&D incentives.

Partner 
matching

Innovation-hypothesis adverts under 
conservative vs. progressive rules to 
form networks.

Heterogeneous 
collaboration

Models both homophily and heterophily yet 
abstracts from non-market partner 
selection (grants, regulation) and search 
costs beyond matching algorithm.

Network 
agent

Network entities inherit parent firms’ 
kenes; share profits; formation costs 
applied; one network per firm.

Firm autonomy Pools knowledge within networks; ignores 
multi-network participation, governance, 
institutional oversight and associated 
transaction costs.

Start-up clone Emergence of inexperienced mimetic 
clones in profitable sectors, constrained 
by tacit knowledge.

Mimetic entry Captures imitative entry; omits non- 
imitative entrepreneurship, policy-driven 
entry incentives and diverse founding 
strategies.

Market 
structure

Closed B2B market with exogenous, price- 
capped demand; no taxation or quality 
competition.

Closed-market 
equilibrium

Enforces fixed, capped demand; omits 
taxation, quality-based competition, 
demand shocks and any price- 
diversification strategies.

Institutional 
layer

Absent–no institutional actors or 
regulations are modeled.

Institutional 
abstraction

Omits all institutional actors and policy 
mechanisms; excludes taxation, subsidies, 
regulation and their effects on innovation 
dynamics.

Financial 
flows

Firms earn revenue from sales and pay 
R&D costs; no credit or subsidy 
mechanisms.

Profit-driven 
dynamics

Models only basic revenue-cost flows; 
excludes financial markets, borrowing, 
savings, subsidies and any fiscal policy 
interventions.

JOURNAL OF ECONOMIC METHODOLOGY 13



et al. (2011), and Gilbert et al. (2014) and the Schumpeter Meeting Keynes Model (K+S) (e.g. Dosi 
et al., 2013, 2010; Dosi, Napoletano, et al., 2017; Dosi, Pereira, et al., 2017; Dosi et al., 2018; Dosi & 
Roventini, 2019; Lamperti et al., 2018). The emphasis is directed towards elucidating the foundational 
components, that are the building blocks, of the ‘innovating engine’ of the models, in relation to 
their overall principles. Tables 1 and 2 summarize the main results. In doing so, we refer to the 
Schumpeterian, the evolutionary and the innovation system literature (e.g. Hall & Rosenberg, 
2010; Lundvall, 2012; Nelson et al., 2018).

3.1. The simulating knowledge dynamics in innovation networks model

The SKIN model (Ahrweiler et al., 2004) is tailored to emulate knowledge-intensive industries with an 
internal business-to-business (B2B) market. It portrays firms as agents endowed with ‘kenes’ (see 
Appendix), constituent units of triplets of knowledge giving an abstract numerical representation 
of industrial capability, technological ability and firm expertise. Kenes determine the creation of 
new products, their characteristics and quality, which are defined from the multiplicative interactions 
of capability × ability and ability × expertise. Kenes evolve by employing a genetic algorithm with a 
limited random component, which is primarily implemented as dichotomous choices (Ahrweiler 
et al., 2004).

The foundational principles guiding the SKIN model encompass a closed market with interacting 
agents, collaboration among firms, endogenous dynamics of product generation and a genetic 
engine replicating knowledge production. These are mirrored in building blocks including the 

Table 2. Core building blocks, principles, characteristics & limits of original K+S model.

Building Block Implementation
Underlying 

Principle Characteristics and limits

Agents & sectors Machine producers; consumption-goods 
producers; labor; government (taxation 
& redistribution).

Multi-sector 
heterogeneity

Represents production, consumption, 
labor and government roles; omits 
households, financial intermediaries 
and non-governmental institutions.

Innovation 
engine

Two-step Bernoulli draw for technological 
‘access’ for each period; fixed split of 
R&D between innovation and imitation.

Endogenous 
technological 
change

Captures R&D uncertainty and efficiency 
gains; excludes radical breakthroughs, 
product diversification and dynamic 
R&D intensity adjustments.

Production cycle Sequence: machine firms advertise 
efficiency gains ! consumption firms 
decide output, investment, suppliers !
hiring ! production.

Sequential inter- 
sector feedback

Captures value-chain interactions; omits 
quality competition and network 
effects.

Market module Imperfect competition for consumption 
goods; market shares evolve on price 
competitiveness; exit/entry maintains 
constant firm count.

Price-driven 
market selection

Accurately models price competition and 
turnover; abstracts from non-price 
factors such as brand, quality, network 
externalities and demand shocks.

Network agent Absent – no explicit inter-firm or 
knowledge-exchange networks are 
modeled.

No networked 
collaborations

Omits all forms of collaborative networks, 
alliances or knowledge spillovers 
beyond market transactions.

New entrants and 
population 
scale

Exit on low share/negative assets; spawn 
naive entrants.

Constant firm 
population

Maintains a fixed number of firms; omits 
endogenously driven entry diversity, 
firm heterogeneity among entrants 
and policy-driven churn or barriers to 
entry.

Institutional layer Government actor sets tax rate, conducts 
redistribution, but no other regulatory 
or institutional bodies; policy is 
exogenous and fixed over time.

Governance 
abstraction

Includes simple tax-redistribution loop; 
omits regulatory bodies, policy 
endogeneity, public R&D funding and 
dynamic institutional change.

Financial flows Wages paid to labor; taxes collected by 
government; redistribution to 
households; investment in new capital 
arrives with a one-period lag.

Macro-closure via 
fiscal & capital

Models essential fiscal flows and capital 
accumulation delay; excludes credit 
markets and broader financial 
dynamics that shape investment and 
innovation.
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knowledge set defined by the kenes, different modes of innovation (incremental vs. radical), network 
creation and a selling market (Ahrweiler et al., 2004). Firms articulate an innovation hypothesis under 
either a conservative, like-capability strategy or a progressive, cross-capability strategy and advertise 
it. Successful advertisements enable the firm to produce and sell its product, which may be an inter-
mediate one for the production of final products. Repeated failure at incremental search triggers 
costlier radical search. Profitable sectors spawn start-up clones, ‘inexperienced’ imitators constrained 
by tacit knowledge. Transactions occur in a closed B2B market characterized by exogenous, price- 
capped demand; taxation, quality competition and institutional actors are explicitly abstracted 
away. Moreover, the model allows for the establishment of network agents that inherit parent 
kenes, share profits net of formation costs, and abide by a one-network-per-firm limit.

3.2. The Schumpeter meeting Keynes model

The original K+S model outlines endogenous growth and business cycles within a closed-market 
structure featuring interacting agents in a two-sector economy (Dosi et al., 2010). The 
model’s building blocks encompass a machine-production sector with stochastic innovation, a 
goods-producing sector, a labor sector and a government sector tasked with tax collection and redis-
tribution (Dosi et al., 2010).

These sectors interact through sequential stages. First, machine-producing firms conduct R&D to 
increase the efficiency of their product and imitate competitors. Then, they advertise to consump-
tion-good producers, which define production level and investments, select suppliers and place 
orders. Afterwards, both sectors hire workers and start production. An imperfectly competitive con-
sumption-good market opens, with evolving market shares based on price competitiveness, and the 
government collects taxes on wages and profits. Entry and exit processes occur, removing firms with 
near-zero market shares and negative net assets and replacing them with new entrants. Lastly, 
machines ordered by capital-good firms at time t are delivered in t + 1, becoming part of the 
capital stock (Dosi et al., 2010).

3.3. Assessing the conceptual constituent: elements of a conceptual reconstruction of 
innovation in the SKIN and K+S models

Applying the first two reconstruction stages, we identify and align each model’s core blocks with 
their guiding principles and define their limitations with respect to their target. Results are summar-
ized in Tables 1 and 2. The innovating engine of the SKIN model portrays the knowledge sphere as 
the primary catalyst of economic activity, subject to extensive abstractions and idealizations. Insti-
tutional drivers are absent, the artificial economy is balanced through exogenous, price-capped 
final demand, taxation is omitted, and costs are confined to purchases of intermediate goods or 
innovation activities (Ahrweiler et al., 2004). In the building blocks of the innovating engine, inno-
vation efforts are redefined over time based on past failures, yet incremental and radical innovations 
do not generate path dependencies, and technological lock-in is effectively excluded. Moreover, 
competition primarily revolves around price rather than quality, that is without engaging in 
market diversification. These choices constrain the model’s adequacy to specific targets and necessi-
tate careful alignment between model assumptions and purpose. As a theoretical tool, SKIN explores 
the effects of network formation in knowledge production, maintaining a stable innovating engine 
across different network configurations. Nevertheless, causal analysis remains restricted by the exclu-
sion of key exogenous factors. The model can also be informed with empirical inputs. In such cases, 
utilizing historical time series becomes crucial to understand network formation since the abstract 
innovating engine may not align with the actual firms’ innovation process. An alternative approach 
involves exploring other types of knowledge-generating systems, such as scientific ones, for which 
the knowledge engine better resembles the innovating mechanism. However, even in that case the 
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model must be tailored with case-specific assumptions, for instance by accommodating competition 
based on quality and opportunity-related R&D.

In the original K+S model two fundamental principles stand out. First, the model rejects the 
notion of a representative agent as inconsistent with economic reality, and motivates in this way 
the choice of an ABM. Second, the number of firms is kept constant by replacing dead firms with 
new entrants. This choice is consistent within the building blocks. For instance, innovation access 
is modeled as a Bernoulli distribution, which is consistent with Nelson and Winter (2004). Where 
explicit assumptions are absent, idealizations are carefully explained, such as the uniform R&D pro-
pensity across firms. Other abstractions are implicit. Innovation strictly enhances efficiency, without 
product diversification or radical breakthroughs, and R&D effort is divided in fixed proportions 
between innovation and imitation. These abstractions and idealizations constrain the potential ade-
quacy of the model to a specific subset of targets. As a theoretical tool, the model tries to provide 
descriptive and causal explanations rooted in advancing economic theory. The descriptive function 
stems from the careful choice of building blocks. However, causal inference requires parameter cali-
bration and empirical validation, which are complicated by the model’s simplifying assumptions. In 
particular, the constancy of firm numbers and the exclusion of radical innovation constrain the 
model’s ability to provide robust counterfactual predictions for policy analysis.

The examination of the SKIN and K+S models reveals context-specific risks and limitations. Both 
models incorporate idealizations that constrain their adequacy to specific subsets of targets and 
purposes. On the one hand, the SKIN model is constrained by idealizations embedded in its 
kene genetic engine and in the treatment of incremental and radical innovation. Risks stem 
from the adequacy of search and mapping functions, emphasizing the importance of carefully con-
textualizing the model’s assumptions. On the other hand, the K+S model encounters challenges 
related to innovation mechanisms and system stabilization, raising the risk of over-interpreting 
model behavior and highlighting the need for caution when transitioning from theoretical descrip-
tion to causal inference.

Subsequent developments have aimed to address these challenges. In the SKIN family, a socio-
logical strand has modeled non-market knowledge production networks with exogenous selection 
processes, such as in the NEMO-SKIN application to EU proposal systems (e.g. Gilbert et al., 2014), 
while innovation network research has incorporated hybrid stochastic mechanisms (e.g. Pyka 
et al., 2019). The K+S lineage has enhanced its modular structure, introducing greater model com-
plexity, variable R&D intensities, endogenous entry and exit, and improved empirical calibration 
methods focused on causal validation (e.g. Dosi et al., 2023; Dosi, Napoletano, et al., 2017; Dosi 
et al., 2019; Lamperti et al., 2018).

4. Conclusion

In this paper, we first reviewed existing ontological frameworks for ABMs and then advanced a struc-
tural-analogical account by conceiving ABM as a multi-layered modeling practice in which meaning 
is distributed across conceptual, algorithmic, and computational constituents. The identification of a 
common inferential framework was necessary to understand how the semantic shift across the 
different substrata would not jeopardize the heuristic and synthetic use of ABMs. We excluded 
deduction, induction and abduction, concentrating our analysis on analogy, specifically 
by employing Bartha’s articulation model (Bartha, 2010). Using this perspective, we introduced a 
pragmatic framework for evaluating analogical mappings across theory, conceptual constituents, 
purpose and target. Within this framework, we defined model adequacy as the condition 
whereby the simulation and the relationships among its constituents are meaningfully connected 
to the theoretical background and aligned with the chosen target, based on the modeling 
purpose, even when strict representational mapping is absent. We further defined model credibility 
as requiring a twofold condition: a model must first be adequate, and then its simulated output must 
be evaluated as sufficiently close to the expected behavior of the target system. Credibility thus 
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involves a distinct, additional evaluation beyond internal coherence, tying the model’s external per-
formance to its theoretical structure.

Additionally, we introduced conceptual reconstruction as a method for assessing the internal 
consistency of an ABM by tracing building blocks and principles back to their conceptual and theor-
etical assumptions. Conceptual reconstruction proceeds through three stages: identifying contextual 
negative analogies, assessing them against the current literature and judging their justification 
according to the intended modeling purpose.

With this minimal reconstructive framework in place, we applied it to the conceptual constituents 
of two prominent families of models in the economics of innovation: the original SKIN (Ahrweiler 
et al., 2004) and K+S (Dosi et al., 2010) models. By following fundamentally different approaches 
in terms of target realism and modeling strategies, the models experienced different epistemic chal-
lenges and appeared inherently suitable for different modeling purposes. The SKIN model offers a 
theoretical and illustrative exploration of network effects and limited causality is supported in 
case of empirical calibration. In contrast, the K+S model sustains a theoretical descriptive analysis, 
and causality is granted through its direct and granular confrontation with economic theory. 
However, the potential to extend causality assessment as an empirically validated counterfactual 
is constrained.

These findings highlight that modeling constraints can be systematically interpreted as analogical 
constraints, and that conceptual reconstruction provides an effective tool for revealing them and 
proposing targeted improvements. Moreover, the historical evolution of both model families 
reflects a gradual response to the epistemic risks identified through this approach. Nevertheless, 
our study encounters limitations, which open up the space for further investigations. Firstly, the 
theoretical framework requires further elaboration, specifically in delineating the notion of causality 
supported by different models and the circumstances in which such notions are applicable. The 
diversity of causality claims in economics (Maziarz, 2020) necessitates a detailed understanding 
within the internal reference system of ABMs, and a structural-analogical account could contribute 
to this. For instance, our approach may exclude certain notions of causality, like the deductive-nomo-
logical framework. In addition, a more in-depth exploration of model adequacy and model credibility 
is essential, as they significantly impact modeling strategy. Lastly, the practice of conceptual recon-
struction should be developed into an established methodology.

Notes
1. In the following, we refer to Agent-Based Modeling (ABM) as the process or methodology, whereas Agent-Based 

Models (ABMs) denote the constructed objects.
2. As recently pointed out in a comprehensive theoretical review by Pero (2024), the notion of target is multifa-

ceted and has a direct impact on modeling activity. More precisely, targets are understood as the ultimate 
object of analysis emerging from a partitioning of phenomena or structures, that are otherwise too complex 
to be analyzed. As such, they bear interesting properties. For instance, they are often co-constructed in relation 
to the model and allow for type-token distinctions (Pero, 2024). Consequently, a proper analysis of a target can 
be only situated in connection with the model and the modeler purpose. For what concerns a general taxonomy, 
we follow the existing literature (e.g. Boero & Squazzoni, 2005; Weisberg, 2013) that distinguishes between 
specific, denoting an individual phenomenon, generalized, encompassing a class of phenomena, or non-existent, 
including conditions in which neither an individual instance of a phenomenon nor a class of phenomena can be 
denoted. By empirically grounded targets we indicate targets for which an individual or a class of phenomena 
are clearly identifiable and it is possible to have access to external data from the phenomenon, or the class of 
phenomena, at hand.

3. For clarity, we will use in the following the terms constituents and constituent layers to denote the model 
components instantiated across different semiotic systems. See Section 2.2 for a description of the 
constituents.

4. This transfer is supported by the fact that ABMs are usually implemented on computational devices and there-
fore are widely recognized as a specific subset of CSs (Humphreys, 2004). Moreover, CSs have been portrayed as 
instances of dynamic models with distinct temporal features (Hartmann, 1996). Transfer from CSs and theory-of- 
model literature in general to ABM in particular are made explicit along the text.
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5. This conforms to models and scientific representation in general, especially in the agent-based (actor-based) per-
spective of Giere (2010).

6. These latter are not marginal, as ABMs result in a concatenation of different layers, which are instantiated on 
different structures. For a general review of the concept in CS literature see e.g. Boge (2020) and Durán 
(2020). In the context of ABM see e.g. Graebner (2018).

7. This conforms to the fact that models and CSs in general are both purpose-driven in relation to a target 
(Edmonds et al., 2019; Knuuttila, 2021a), which may be theoretical, idealized, generalized or actual empirical con-
structs (Magnani, 2009; Morrison, 2015; Weisberg, 2013), and their creation is shaped by the overall epistemic 
landscape of reference (Aydinonat et al., 2021; Bokulich, 2014). Modeling purposes also engage with the avail-
able external data, which are widely recognized as being non-neutral (e.g. Bokulich & Parker, 2021; Woodward, 
2000, 2010), thus shaping the level of target accessibility.

8. This consideration is true for any technical object and, more generally, for any generated entity. As a philoso-
phical issue, this can be considered in its static nature as the dyadic identification and relation problem (for 
an example regarding the theory of models see e.g. Salis et al., 2020) or in its dynamic nature as the problem 
of technical individuation (e.g. Simondon, 2011; Simondon & Adkins, 2020).

9. CSs in general have been widely regarded as epistemic instruments expanding the cognitive capacities of the 
modeler (e.g. Alvarado, 2021; Humphreys, 2004).

10. A theoretical example of purely functional representation is the prediction offered by a mechanical oracle (see 
e.g. Symons & Alvarado, 2019). The oracle represents in t the state of an object at t + 1, by employing mechan-
isms that are by definition different from the original ones.

11. We maintain the following distinction between verification, calibration and validation, although we acknowl-
edge that several authors might adopt a different taxonomy (see e.g. Seri et al., 2021, p. 63). Verification assesses 
that the CS accurately specifies desired numerical conditions and patterns. Following Durán (2013), three main 
verification activities are distinguished: (a) code verification, (b) calculation verification, (c) robustness analysis. 
Validation, on the other side, is a method for evaluating the CS by comparing results with data from other 
sources (Durán, 2013) and encompasses three distinct phases of input validation, process validation and 
output validation (e.g. Graebner, 2018). Regarding calibration, we refer to it as adjusting or tuning the model 
on existing data (e.g. Beisbart & Saam, 2019).

12. This adds up with the already known essential epistemic opacity that is due to the incapability, by the modeler, 
to inspect the actual computational processes of the simulations (see e.g. Humphreys, 2004).

13. Several research programmes have addressed this issue in their respective domains. Beyond the works cited in 
footnote 7 and the study of Nersessian (2022) about computational modeling in research teams, economists and 
social scientists have emphasized it by distinguishing epistemic requirements according to modeling purposes 
and strategies (Edmonds et al., 2019; Vriend, 2006).

14. The account developed here focuses not on external validation but on the internal referential structure that 
governs interactions among constituents. This perspective aligns with positions such as Weisberg (2013), 
which emphasize the importance of internal coherence in establishing theoretical consistency. At the same 
time, it accommodates a pluralistic view of modeling purposes: as emphasized in the ABM literature 
(e.g. Edmonds et al., 2019), different purposes may shape how a simulation is constructed and interpreted, 
and thus how meaning is distributed across its constituent layers. In this respect, we refrain from taking a 
stance on the longstanding philosophical debate about the kinds of inferences simulations may support – 
whether they are best conceived as experimental tools that extend epistemic access (e.g. Boge, 2019; 
Morgan, 2004; Parker, 2009), or as argumentative constructs embedded in broader justificatory practices 
(e.g. Beisbart, 2012, 2018; Beisbart & Norton, 2012). Our analysis is more limited in scope, focusing on the internal 
referential dynamics of the model itself. We thank an anonymous reviewer for highlighting this distinction 
between our approach and prior contributions.

15. It is worth noting that calibration and validation do not rely solely on induction. By constraining the output 
space or some parameters, they provide semantic content that goes beyond merely stating an existing regu-
larity. Unfortunately, this may still be insufficient for overcoming the potential issue of equifinality, which 
limits the value of pure data-driven and bottom-up evaluations of conceptual constituents.

16. Bunge (1973) interestingly outlined two constraints for simulations. Firstly, the simulated object must be conta-
giously analogous to the target, where contagious analogy is defined as having a transitive similarity relation. 
Secondly, the analogy must possess significance, defined as valuable either intrinsically or for a third party. 
Therefore, according to him simulations are by design analogies.

17. Multiple analogies are defined as several distinct analogies supporting the same conclusion (Bartha, 2010). 
Nested analogies are analogies that are mediated by a third analogue (Nersessian & Chandrasekharan, 2009). 
Thus, nested analogies are transitive and refer to different domains.

18. By conceptual transduction we mean the process of structuring the conceptual domain according to the implicit 
and explicit schemes and rules that convey the overall purpose. We borrow the term transduction from Simon-
don and Adkins (2020), according to whom 
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[b]y transduction we mean a physical, biological, mental, or social operation through which an activity 
propagates incrementally within a domain by basing this propagation on a structuration of the 
domain operated from one region to another: each structural region serves as a principle and model, 
as an initiator for constituting the following region, such that a modification thereby extends progress-
ively throughout this structuring operation. (Simondon & Adkins, 2020, p. 13)

19. The formulation of Dosi et al. (2010) is slightly different but mathematically equivalent.
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Appendix

The notion of innovation in the SKIN models
The evolution of kenes within the SKIN model is driven by the dynamic interaction of agents with their environment 
(e.g. Ahrweiler et al., 2004). Notably, the model diverges from a standard genetic algorithm by lacking an explicit 
fitness function.

Firms within the SKIN model possess a set of ‘units of knowledge,’ represented by triplets: 

. Capability (C): An integer indicating the overall domain of application, symbolizing the industry.

. Ability (A): A real number representing the sub-field of application, signifying a specific technique involved.

. Expertise (E): A real number denoting the actual expertise of the firm based on Capability and Ability.

The Innovation Hypothesis (IH) is defined as a subset of the knowledge base, encompassing the total set of kenes of 
each firm. The hypothesized product is defined by a direct mapping of the capabilities and the abilities of the IH, while 
its own quality is determined by the abilities and the expertise of the IH. Product inputs are determined by mapping a 
specific subset of the hypothesized product.

The SKIN model incorporates two modes of research: 

(1) Incremental Research: Modeled as a random change by one unit of the ability of one randomly chosen triplet. In 
case of failure, a new triplet is randomly chosen.

(2) Radical Research: Modeled as a random change in one capability of one randomly chosen triplet. Failure prompts 
the selection of a completely new triplet.

A crucial element to assess compatibility among producers and to establish networks in the SKIN model is advertis-
ing, that involves creating a list of the capabilities of the IH of all firms.

The notion of innovation in the K+S models
In the K+S model (e.g. Dosi et al., 2010), the concept of innovation is tied to the technology employed by capital-good 
firms, denoted as the couple (At

i , Bt
i ), where A signifies the productivity of the manufactured machine-tool, B represents 

the productivity of the production technique generating the machine tool, and Ĳ�denotes the technology vintage.
Firms in the capital-good industry adaptively strive to enhance market shares and profits by improving technology 

through both innovation and imitation. These processes incur costs, with firms investing a fraction of their past sales to 
hire workers in research and development (R&D) and to foster innovation and imitation processes. Dosi et al. (2010) 
assume all capital-producing firms share identical R&D propensity, reflecting sector-specific R&D intensities and the 
sector-wide nature of innovative opportunities.

In the model, innovation is conceptualized as a two-step process. The first step determines whether a firm i gains 
access in time t to innovation through a draw from a Bernoulli distribution whose parameter uin

i (t) is an increasing func-
tion of R&D expenditures.

If a firm innovates, it draws a new machine-embodying technology (Ain
i (t), Bin

i (t)), whose productivities are equal to 
the ones of the existing technology (Ai(t), Bi(t)) times the realizations of two positive beta random variables (yA

i (t), yB
i (t)), 

different for each firm and time period:19

Ain
i t( ) = Ai t( )yA

i t( ),
Bin

i t( ) = Bi t( )yB
i t( ).

The support and the shape of the distributions from which (yA
i (t), yB

i (t)) are drawn depend on technological opportu-
nities: high opportunities, captured by distributions shifted to the right, lead to a higher probability of innovations sur-
passing incumbent technologies; with low opportunities, represented by distributions shifted towards zero, the 
probability is higher that innovation leads to ‘failed’ technologies that are then discarded.
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