Numerical Analysis

Uniformity of Points

Quantifying uniformity of a configuration of points on a space is a topic that is receiving growing attention in computer science, physics and mathematics. The problem has interesting connections with statistics, where several tests of uniformity have been introduced.

The asymptotic distribution of Riesz' Energy

International conference

The asymptotic distribution of Riesz' energy

International conference

Universal HD robustness of uniformity tests on the hypersphere

International conference

Statistical Properties of $b$-adic Diaphonies

The aim of this paper is to derive the asymptotic statistical properties of a class of discrepancies on the unit hypercube called $b$-adic diaphonies. They have been introduced to evaluate the equidistribution of quasi-Monte Carlo sequences on the unit hypercube. We consider their properties when applied to a sample of independent and uniformly distributed random points. We show that the limiting distribution of the statistic is an infinite weighted sum of chi-squared random variables, whose weights can be explicitly characterized and computed. We also describe the rate of convergence of the finite-sample distribution to the asymptotic one and show that this is much faster than in the classical Berry-Esséen bound. Then, we consider in detail the approximation of the asymptotic distribution through two truncations of the original infinite weighted sum, and we provide explicit and tight bounds for the truncation error. Numerical results illustrate the findings of the paper, and an empirical example shows the relevance of the results in applications.

Computing Weighted Chi-Squared Distributions and Related Quantities

International conference

Computational aspects of the distribution of generalized discrepancies

International conference

Computational Aspects of Cui-Freeden Statistics for Equidistribution on the Sphere

In this paper, we derive the asymptotic statistical properties of a class of generalized discrepancies introduced by Cui and Freeden (*SIAM J. Sci. Comput.*, 1997) to test equidistribution on the sphere. We show that they have highly desirable properties and encompass several statistics already proposed in the literature. In particular, it turns out that the limiting distribution is an (infinite) weighted sum of chi-squared random variables. Issues concerning the approximation of this distribution are considered in detail and explicit bounds for the approximation error are given. The statistics are then applied to assess the equidistribution of Hammersley low discrepancy sequences on the sphere and the uniformity of a dataset concerning magnetic orientations.

Numerical Properties of Generalized Discrepancies on Spheres of Arbitrary Dimension

Quantifying uniformity of a configuration of points on the sphere is an interesting topic that is receiving growing attention in numerical analysis. An elegant solution has been provided by Cui and Freeden [J. Cui, W. Freeden, Equidistribution on the sphere, *SIAM J. Sci. Comput.* 18 (2) (1997) 595-609], where a class of discrepancies, called generalized discrepancies and originally associated with pseudodifferential operators on the unit sphere in R3, has been introduced. The objective of this paper is to extend to the sphere of arbitrary dimension this class of discrepancies and to study their numerical properties. First we show that generalized discrepancies are diaphonies on the hypersphere. This allows us to completely characterize the sequences of points for which convergence to zero of these discrepancies takes place. Then we discuss the worst-case error of quadrature rules and we derive a result on tractability of multivariate integration on the hypersphere. At last we provide several versions of Koksma-Hlawka type inequalities for integration of functions defined on the sphere.

Comparison of quadrature rules for the Wielandt-Nyström method with statistical applications

International conference