Numerical Analysis

Statistical Properties of Generalized Discrepancies

When testing that a sample of n points in the unit hypercube $[0,1]^d$ comes from a uniform distribution, the Kolmogorov-Smirnov and the Cramér-von Mises statistics are simple and well-known procedures. To encompass these measures of uniformity, Hickernell introduced the so-called generalized $\mathscr{L}^p$-discrepancies. These discrepancies can be used in numerical integration through Monte Carlo and quasi-Monte Carlo methods, design of experiments, uniformity testing and goodness-of-fit tests. The aim of this paper is to derive the statistical asymptotic properties of these statistics under Monte Carlo sampling. In particular, we show that, under the hypothesis of uniformity of the sample of points, the asymptotic distribution is a complex stochastic integral with respect to a pinned Brownian sheet. On the other hand, if the points are not uniformly distributed, then the asymptotic distribution is Gaussian.

Diaphonies on Sobolev classes of functions

International conference

Diaphonies on Sobolev classes of functions

International conference

Computing Weighted Chi-square Distributions and Related Quantities

International conference

Generalized Discrepancies on Spheres of Arbitrary Dimension

International conference

Computing Weighted Chi-square Distributions and Related Quantities

International conference

Approximation of the Asymptotic Distribution of Quadratic Discrepancies

National conference

Statistical Properties of Generalized Discrepancies and Related Quantities

International conference

Generalized Discrepancies and Goodness-of-Fit Tests

Seminar

Statistical Properties of Generalized Discrepancies and Related Quantities

International conference