We consider measures of covering and separation that are expressed through maxima and minima of distances between points of an hypersphere. We investigate the behavior of these measures when applied to a sample of independent and uniformly distributed points. In particular, we derive their asymptotic distributions when the number of points diverges. These results can be useful as a benchmark against which deterministic point sets can be evaluated. Whenever possible, we supplement the rigorous derivation of these limiting distributions with some heuristic reasonings based on extreme value theory. As a by-product, we provide a proof for a conjecture on the hole radius associated to a facet of the convex hull of points distributed on the hypersphere.